Towards the Quantitative Evaluation of Phased Maintenance Procedures Using Non-Markovian Regenerative Analysis

  • Laura Carnevali
  • Marco Paolieri
  • Kumiko Tadano
  • Enrico Vicario
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8168)

Abstract

The concept of Phased Mission Systems (PMS) can be used to describe maintenance procedures made of sequential actions that use a set of resources and may severely affect them, for instance operations that require outage of hardware and/or software components to recover from a failure or to perform upgrades, tests, and configuration changes. We propose an approach for modeling and evaluation of this class of maintenance procedures, notably addressing the case of actions with non-exponential and firmly bounded duration. This yields stochastic models that underlie a Markov Regenerative Process (MRP) with multiple concurrent timed events having a general (GEN) distribution over a bounded support, which can be effectively analyzed through the method of stochastic state classes. The approach allows evaluation of transient availability measures, which can be exploited to support the selection of a rejuvenation plan of system resources and the choice among different feasible orderings of actions. The experiments were performed through a new release of the Oris tool based on the Sirio framework.

Keywords

Phased mission systems maintenance-induced failures transient availability measures Markov regenerative processes stochastic state classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic Petri net. IEEE Trans. SW Eng. 20(7), 506–515 (1994)CrossRefGoogle Scholar
  2. 2.
    Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity cycles. In: Int. Comp. Perf. and Dependability Symp. - IPDS 1995, pp. 124–133 (1995)Google Scholar
  3. 3.
    Bernardi, S., Campos, J., Merseguer, J.: Timing-failure risk assessment of UML design using time Petri net bound techniques. IEEE Transactions on Industrial Informatics 7(1), 90–104 (2011)CrossRefGoogle Scholar
  4. 4.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. on SW Eng. 17(3), 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: a web-accessible Petri net tool. In: Proc. Conf on Web-based Modeling and Simulation (1998)Google Scholar
  6. 6.
    Bruneo, D., Distefano, S., Longo, F., Scarpa, M.: Stochastic evaluation of QoS in service-based systems. IEEE Trans. on Parallel and Distributed Systems (2012)Google Scholar
  7. 7.
    Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. Journal of SW Tools for Technology Transfer 12(5), 391–403 (2010)CrossRefGoogle Scholar
  8. 8.
    Burdick, L., Fussell, J.B., Rasmuson, D., Wilson, J.: Phased mission analysis: a review of new developments and an application. IEEE Trans. on Rel. 26(1), 43–49 (1977)CrossRefGoogle Scholar
  9. 9.
    Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains in the analysis of non-Markovian models. IEEE Trans. on SW Eng. 35(2), 178–194 (2009)CrossRefGoogle Scholar
  10. 10.
    Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Carnevali, L., Ridi, L., Vicario, E.: Putting preemptive time Petri nets to work in a V-model SW life cycle. IEEE Trans. on SW Eng. 37(6) (November/December 2011)Google Scholar
  12. 12.
    Carnevali, L., Ridi, L., Vicario, E.: Sirio: A framework for simulation and symbolic state space analysis of non-Markovian models. In: 8th Int. Conf. on Quantitative Evaluation of Systems (QEST 2011), pp. 153–154 (2011)Google Scholar
  13. 13.
    Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1-3), 337–357 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Combacau, M., Berruet, P., Zamai, E., Charbonnaud, P., Khatab, A.: Supervision and monitoring of production systems. In: Proc. IFAC Conf. on Management and Control of Production and Logistics (2000)Google Scholar
  15. 15.
    Dugan, J.B.: Automated analysis of phased-mission reliability. IEEE Trans. on Reliability 40(1), 45–52 (1991)MATHCrossRefGoogle Scholar
  16. 16.
    Dugan, J.B.: Galileo: A tool for dynamic fault tree analysis. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 328–331. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perf. Eval. 69(7-8), 315–335 (2012)CrossRefGoogle Scholar
  18. 18.
    Mura, I., Bondavalli, A.: Markov regenerative stochastic Petri nets to model and evaluate phased mission systems dependability. IEEE Trans. Comput. 50(12), 1337–1351 (2001)CrossRefGoogle Scholar
  19. 19.
    Ou, Y., Dugan, J.B.: Modular solution of dynamic multi-phase systems. IEEE Transactions on Reliability 53(4), 499–508 (2004)CrossRefGoogle Scholar
  20. 20.
    Glynn, P.W.: A GSMP formalism for discrete-event systems. Proceedings of the IEEE 77, 14–23 (1989)CrossRefGoogle Scholar
  21. 21.
    Shrestha, A., Xing, L., Dai, Y.: Reliability analysis of multistate phased-mission systems with unordered and ordered states. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41(4), 625–636 (2011)CrossRefGoogle Scholar
  22. 22.
    Tadano, K., Xiang, J., Kawato, M., Maeno, Y.: Automatic synthesis of SRN models from system operation templates for availability analysis. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 296–309. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Trivedi, K.S.: Probability and statistics with reliability, queuing, and computer science applications. John Wiley and Sons, New York (2001)Google Scholar
  24. 24.
    Vicario, E.: Static analysis and dynamic steering of time dependent systems using time Petri nets. IEEE Trans. on SW Eng. 27(1), 728–748 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. on SW Eng. 35(5), 703–719 (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, D., Trivedi, K.S.: Reliability analysis of phased-mission system with independent component repairs. IEEE Trans. on Reliability 56(3), 540–551 (2007)CrossRefGoogle Scholar
  27. 27.
    Weiss, K.A., Leveson, N., Lundqvist, K., Farid, N., Stringfellow, M.: An analysis of causation in aerospace accidents. In: Digital Avionics Systems Conference (DASC), vol. 1, pp. 4A3–4A1. IEEE (2001)Google Scholar
  28. 28.
    Xing, L., Dugan, J.B.: Analysis of generalized phased-mission system reliability, performance, and sensitivity. IEEE Trans. on Reliability 51(2), 199–211 (2002)CrossRefGoogle Scholar
  29. 29.
    Xing, L., Dugan, J.B.: A separable ternary decision diagram based analysis of generalized phased-mission reliability. IEEE Trans. on Rel. 53(2), 174–184 (2004)CrossRefGoogle Scholar
  30. 30.
    Yam, R., Tse, P., Li, L., Tu, P.: Intelligent predictive decision support system for condition-based maintenance. Int. Journal of Advanced Manufacturing Technology 17(5), 383–391 (2001)CrossRefGoogle Scholar
  31. 31.
    Zang, X., Sun, N., Trivedi, K.S.: A BDD-based algorithm for reliability analysis of phased-mission systems. IEEE Transactions on Reliability 48(1), 50–60 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laura Carnevali
    • 1
  • Marco Paolieri
    • 1
  • Kumiko Tadano
    • 2
  • Enrico Vicario
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità di FirenzeItaly
  2. 2.Service Platforms Research LaboratoriesNEC CorporationKawasakiJapan

Personalised recommendations