Advertisement

Linguistic and Statistically Derived Features for Cause of Death Prediction from Verbal Autopsy Text

  • Samuel Danso
  • Eric Atwell
  • Owen Johnson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8105)

Abstract

Automatic Text Classification (ATC) is an emerging technology with economic importance given the unprecedented growth of text data. This paper reports on work in progress to develop methods for predicting Cause of Death from Verbal Autopsy (VA) documents recommended for use in low-income countries by the World Health Organisation. VA documents contain both coded data and open narrative. The task is formulated as a Text Classification problem and explores various combinations of linguistic and statistical approaches to determine how these may improve on the standard bag-of-words approach using a dataset of over 6400 VA documents that were manually annotated with cause of death. We demonstrate that a significant improvement of prediction accuracy can be obtained through a novel combination of statistical and linguistic features derived from the VA text. The paper explores the methods by which ATC may leads to improved accuracy in Cause of Death prediction.

Keywords

Verbal Autopsy Cause of Death Prediction Features Text Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organization: WHO Handbook for Reporting Results of Cancer Treatments (WHO Offset Publication No. 48) (2004)Google Scholar
  2. 2.
    Kahn, K., Tollman, S.M., Garenne, M., Gear, J.S.: Validation and application of verbal autopsies in a rural area of South Africa. Tropical Medicine & International Health 5(11), 824–831 (2000)CrossRefGoogle Scholar
  3. 3.
    Byass, P., Kathleen, K., Edward, F., Mark, A.C., Stephen, M.T.: Moving from Data on Deaths to Public Health Policy in Agincourt, South Africa: Approaches to Analysing and Understanding Verbal Autopsy Findings. PLoS Medicine 7(8) (2010)Google Scholar
  4. 4.
    King, G., Lu, Y., Shibuya, K.: Designing verbal autopsy studies. Population Health Metrics 8(1), 19 (2010)CrossRefGoogle Scholar
  5. 5.
    Byass, P., Edward, F., Dao Lan, H., Yamene, B., Tumani, C., Kathleen, K., Lulu, M.: Refining a probabilistic model for interpreting verbal autopsy data. Scandinavian Journal of Public Health 34(1), 26–31 (2006)CrossRefGoogle Scholar
  6. 6.
    Murray, C.J.L., Alan, D.L., Dennis, F., Shannon, T.P., Gonghuan, Y.: Validation of the symptom pattern method for analyzing verbal autopsy data. PLOS Medicine 4, 1739–1753 (2007)Google Scholar
  7. 7.
    Soleman, N., Chandramohan, D., Shibuya, K.: WHO Technical Consultation on Verbal Autopsy Tools, Geneva (2005)Google Scholar
  8. 8.
    Pakhomov, S., Shah, N., Hanson, P., Balasubramaniam, S., Smith, S.: Automatic quality of life prediction using electronic medical records. American Medical Informatics Association (2008)Google Scholar
  9. 9.
    Pakhomov, S., Weston, S.A., Jacobsen, S.J., Chute, C.G., Meverden, R., Roger, V.L.: Electronic medical records for clinical research: application to the identification of heart failure. The American Journal of Managed Care 13(6 Part 1), 281 (2007)Google Scholar
  10. 10.
    Cohen, A.M., Hersh, W.R.: A survey of current work in biomedical text mining. Briefings in Bioinformatics 6(1), 57–71 (2005)CrossRefGoogle Scholar
  11. 11.
    Cohen, A.M.: An effective general purpose approach for automated biomedical document classification. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association (2006)Google Scholar
  12. 12.
    Nikfarjam, A., Gonzalez, G.H.: Pattern mining for extraction of mentions of adverse drug reactions from user comments. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association (2011)Google Scholar
  13. 13.
    Leaman, R., Wojtulewicz, L., Sullivan, R., Skariah, A., Yang, J., Gonzalez, G.: Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. Association for Computational Linguistics (2010)Google Scholar
  14. 14.
    Gamon, M.: Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 841. Association for Computational Linguistics, Geneva (2004)Google Scholar
  15. 15.
    Oberlander, J., Nowson, S.: Whose thumb is it anyway?: classifying author personality from weblog text. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions. Association for Computational Linguistics (2006)Google Scholar
  16. 16.
    Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics, Philadelphia (2002)Google Scholar
  17. 17.
    Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: Annual Meeting-Association For Computational Linguistics (2005)Google Scholar
  18. 18.
    Danso, S., Atwell, E.S., Johnson, O., ten Asbroek, A., Soromekun, S., Edmond, K., Hurt, C., Hurt, L., Zandoh, C., Tawiah, C., Fenty, J., Etego, S., Agyei, S., Kirkwood, B.: A semantically annotated Verbal Autopsy corpus for automatic analysis of cause of death. ICAME Journal of the International Computer Archive of Modern English 37 (in press, 2013)Google Scholar
  19. 19.
    Francis, W.N., Kucera, H.: Brown corpus manual. Letters to the Editor 5(2), 7 (1979)Google Scholar
  20. 20.
    Scott, S., Matwin, S.: Text classification using WordNet hypernyms. In: Use of WordNet in Natural Language Processing Systems: Proceedings of the Conference (1998)Google Scholar
  21. 21.
    Forman, G.: A pitfall and solution in multi-class feature selection for text classification. ACM (2004)Google Scholar
  22. 22.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Lawrence Erlbaum Associates Ltd. (1995)Google Scholar
  23. 23.
    Danso, S., Atwell, E.S., Johnson, O.: A Comparative Study of Machine Learning Methods for Verbal Autopsy Text Classification. International Journal of Computer Science Issues 10 (in press)Google Scholar
  24. 24.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2005)Google Scholar
  25. 25.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, Association for Computational Linguistics (2002)Google Scholar
  26. 26.
    Loper, E., Bird, S.: NLTK: the Natural Language Toolkit. In: Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, vol. 1, pp. 63–70. Association for Computational Linguistics, Philadelphia (2002)CrossRefGoogle Scholar
  27. 27.
    Wilks, Y., Stevenson, M.: Word sense disambiguation using optimised combinations of knowledge sources. In: Proceedings of the 17th International Conference on Computational Linguistics, vol. 2. Association for Computational Linguistics (1998)Google Scholar
  28. 28.
    Moschitti, A., Basili, R.: Complex linguistic features for text classification: A comprehensive study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 181–196. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Matsumoto, S., Takamura, H., Okumura, M.: Sentiment classification using word sub-sequences and dependency sub-trees. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 301–311. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Scott, S., Matwin, S.: Feature engineering for text classification. In: Machine Learning-International Workshop Conference (1999)Google Scholar
  31. 31.
    Harris, Z.S.: Methods in structural linguistics (1951)Google Scholar
  32. 32.
    McKeown, K.R., Radev, D.R.: Collocations. Handbook of Natural Language Processing. Marcel Dekker (2000)Google Scholar
  33. 33.
    Pearce, D., Qh, B.: Using conceptual similarity for collocation extraction. In: Proceedings of the Fourth Annual CLUK Colloquium (2001)Google Scholar
  34. 34.
    Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational. Linguistics 19(1), 61–74 (1993)Google Scholar
  35. 35.
    Seretan, V., Nerima, L., Wehrli, E.: Extraction of multi-word collocations using syntactic bigram composition. In: Proceedings of the Fourth International Conference on Recent Advances in NLP, RANLP-2003 (2003)Google Scholar
  36. 36.
    Pearce, D.: A comparative evaluation of collocation extraction techniques. In: Proceedings of the 3rd International Conference on Language Resources and Evaluation, LREC 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Samuel Danso
    • 1
    • 2
  • Eric Atwell
    • 1
    • 2
  • Owen Johnson
    • 2
  1. 1.School of Computing, Language Research GroupUniversity of LeedsUK
  2. 2.Yorkshire Centre for Health Informatics, eHealth Research GroupUniversity of LeedsUK

Personalised recommendations