Coarse-Grained Brownian Dynamics Simulation of Rule-Based Models

  • Michael Klann
  • Loïc Paulevé
  • Tatjana Petrov
  • Heinz Koeppl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8130)

Abstract

Studying spatial effects in signal transduction, such as co-localization along scaffold molecules, comes at a cost of complexity. In this paper, we propose a coarse-grained, particle-based spatial simulator, suited for large signal transduction models. Our approach is to combine the particle-based reaction and diffusion method, and (non-spatial) rule-based modeling: the location of each molecular complex is abstracted by a spheric particle, while its internal structure in terms of a site-graph is maintained explicit. The particles diffuse inside the cellular compartment and the colliding complexes stochastically interact according to a rule-based scheme. Since rules operate over molecular motifs (instead of full complexes), the rule set compactly describes a combinatorial or even infinite number of reactions. The method is tested on a model of Mitogen Activated Protein Kinase (MAPK) cascade of yeast pheromone response signaling. Results demonstrate that the molecules of the MAPK cascade co-localize along scaffold molecules, while the scaffold binds to a plasma membrane bound upstream component, localizing the whole signaling complex to the plasma membrane. Especially we show, how rings stabilize the resulting molecular complexes and derive the effective dissociation rate constant for it.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P.: Detailed simulations of cell biology with smoldyn 2.1. PLoS Computational Biology 6(3), 1000705 (2010)CrossRefGoogle Scholar
  2. 2.
    Berdnikov, V., Doktorov, A.: Steric factor in diffusion-controlled chemical reactions. Chemical Physics 69(1), 205–212 (1982)CrossRefGoogle Scholar
  3. 3.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Danos, V., Honorato-Zimmer, R., Riveri, S., Stucki, S.: Rigid geometric constraints for Kappa models. Electronic Notes in Theoretical Computer Science (2012)Google Scholar
  5. 5.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS 2010, pp. 362–381 (2010)Google Scholar
  6. 6.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Erban, R., Chapman, S.: Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. Phys. Biol. 6, 046001 (2009)CrossRefGoogle Scholar
  8. 8.
    Faeder, J., Blinov, M., Hlavacek, W.: Rule-based modeling of biochemical systems with bionetgen. In: Systems Biology, pp. 113–167. Springer (2009)Google Scholar
  9. 9.
    Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proceedings of the National Academy of Sciences 106(16), 6453–6458 (2009)CrossRefGoogle Scholar
  10. 10.
    Feret, J., Henzinger, T.A., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-based systems. In: Ciobanu, G., Koutny, M. (eds.) MeCBIC. EPTCS, vol. 40, pp. 142–161 (2010)Google Scholar
  11. 11.
    Gruenert, G., Ibrahim, B., Lenser, T., Lohel, M., Hinze, T., Dittrich, P.: Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics 11(1), 307 (2010)CrossRefGoogle Scholar
  12. 12.
    Klann, M., Koeppl, H.: Spatial simulations in systems biology: from molecules to cells. International Journal of Molecular Sciences 13, 7798–7827 (2012)CrossRefGoogle Scholar
  13. 13.
    Klann, M., Koeppl, H.: Reaction schemes, escape times and geminate recombinations in particle-based spatial simulations of biochemical reactions. Physical Biology 10, 046005 (2013)CrossRefGoogle Scholar
  14. 14.
    Klann, M., Ganguly, A., Koeppl, H.: Improved reaction scheme for spatial stochastic simulations with single molecule detail. In: Proceedings of the International Workshop on Computional Systems Biology, WCSB 2011, Zurich, pp. 93–96 (2011)Google Scholar
  15. 15.
    Klann, M., Lapin, A., Reuss, M.: Stochastic Simulation of Reactions in the Crowded and Structured Intracellular Environment: Influence of Mobility and Location of the Reactants. BMC Systems Biology 5(1), 71 (2011)CrossRefGoogle Scholar
  16. 16.
    Morelli, M., Ten Wolde, P.: Reaction Brownian dynamics and the effect of spatial fluctuations on the gain of a push-pull network. J. Chem. Phys. 129, 054112 (2008)CrossRefGoogle Scholar
  17. 17.
    Mugler, A., Tostevin, F., ten Wolde, P.: Spatial partitioning improves the reliability of biochemical signaling. Proceedings of the National Academy of Sciences 110(15), 5927–5932 (2013)CrossRefGoogle Scholar
  18. 18.
    Petrov, T., Feret, J., Koeppl, H.: Reconstructing species-based dynamics from reduced stochastic rule-based models. In: Proceedings of the Winter Simulation Conference, p. 225. Winter Simulation Conference (2012)Google Scholar
  19. 19.
    Thomson, T., et al.: Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proceedings of the National Academy of Sciences 108(50), 20265–20270 (2011)CrossRefGoogle Scholar
  20. 20.
    Tolle, D.P., Le Novère, N.: Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes. BMC Systems Biology 4(1), 24 (2010)CrossRefGoogle Scholar
  21. 21.
    Traytak, S.: Diffusion-controlled reaction rate to an active site. Chemical Physics 192(1), 1–7 (1995)CrossRefGoogle Scholar
  22. 22.
    Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophysical Journal 87, 3518–3524 (2004)CrossRefGoogle Scholar
  23. 23.
    ZigCell3D: from ScienceVisuals, zigcell.sciencevisuals.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Klann
    • 1
  • Loïc Paulevé
    • 1
  • Tatjana Petrov
    • 1
  • Heinz Koeppl
    • 1
    • 2
  1. 1.BISON Group, Automatic Control LaboratoryETH ZurichZurichSwitzerland
  2. 2.IBM Research - ZurichRueschlikonSwitzerland

Personalised recommendations