Linking Discrete and Stochastic Models: The Chemical Master Equation as a Bridge between Process Hitting and Proper Generalized Decomposition

  • Courtney Chancellor
  • Amine Ammar
  • Francisco Chinesta
  • Morgan Magnin
  • Olivier Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8130)

Abstract

Modeling frameworks bring structure and analysis tools to large and non-intuitive systems but come with certain inherent assumptions and limitations, sometimes to an inhibitive extent. By building bridges in existing models, we can exploit the advantages of each, widening the range of analysis possible for larger, more detailed models of gene regulatory networks. In this paper, we create just such a link between Process Hitting [6,7,8], a recently introduced discrete framework, and the Chemical Master Equation in such a way that allows the application of powerful numerical techniques, namely Proper Generalized Decomposition [1,2,3], to overcome the curse of dimensionality. With these tools in hand, one can exploit the formal analysis of discrete models without sacrificing the ability to obtain a full space state solution, widening the scope of analysis and interpretation possible. As a demonstration of the utility of this methodology, we have applied it here to the p53-mdm2 network [4,5], a widely studied biological regulatory network.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammar, A., Cueto, E., Chinesta, F.: Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions. International Journal for Numerical Methods in Biomedical Engineering 28(9), 960–973 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chinesta, F., Ammar, A., Leygue, A., Keunings, R.: An overview of the proper generalized decomposition with applications in computational rheology. Journal of Non-Newtonian Fluid Mechanics 166(11), 578–592 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Chinesta, F., et al.: PGD-Based computational vademecum for efficient design, optimization and control. Archives of Computational Methods in Engineering 20(1), 31–59 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Abou-Jaoudé, W., Ouattara, D., Kaufman, M.: Frequency tuning in the p53-mdm2 network. I. Logical approach. Journal of Theoretical Biology 258, 561–577 (2009)CrossRefGoogle Scholar
  5. 5.
    Abou-Jaoudé, W., Ouattara, D., Kaufman, M.: Frequency tuning in the p53-mdm2 network. II. Differential and stochastic approaches. Journal of Theoretical Biology 264(4), 1177–1189 (2010)CrossRefGoogle Scholar
  6. 6.
    Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS (LNBI), vol. 6575, pp. 171–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Folschette, M., Paulevé, L., Inoue, K., Magnin, M., Roux, O.: Concretizing the process hitting into biological regulatory networks. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 166–186. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Paulevé, L., Magnin, M., Roux, O.: Tuning Temporal Features within the Stochastic-Calculus. IEEE Transactions on Software Engineering 37(6), 858–871 (2011)CrossRefGoogle Scholar
  9. 9.
    Paulevé, L., Magnin, M., Roux, O.: Pint-Process Hitting Related Tools (October 10, 2010), http://processhitting.wordpress.com (April 16, 2013)
  10. 10.
    Jolliffe, I.: Principal component analysis, vol. 487. Springer, New York (1986)CrossRefGoogle Scholar
  11. 11.
    Leenders, G., Tuszynski, J.: Stochastic and deterministic models of cellular p53 regulation. Frontiers in Molecular and Cellular Oncology 3(64) (2013)Google Scholar
  12. 12.
    Bernot, G., et al.: Application of formal methods to biological regulatory networks: extending Thomas asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Paulevé, L., Youssef, S., Lakin, M., Phillips, A.: A Generic Abstract Machine for Stochastic Process Calculi. In: Proceedings of the 8th International Conference on Computational Methods in Systems Biology, pp. 43–54 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Courtney Chancellor
    • 1
    • 2
  • Amine Ammar
    • 4
  • Francisco Chinesta
    • 2
  • Morgan Magnin
    • 1
    • 3
  • Olivier Roux
    • 1
  1. 1.École Centrale de Nantes, IRCCyN UMR CNRS 6597L’UNAM UniversitéFrance
  2. 2.École Centrale de Nantes, GeM UMR CNRS 6183L’UNAM UniversitéFrance
  3. 3.National Institute of InformaticsTokyoJapan
  4. 4.AngersArts et Metiers ParisTech.France

Personalised recommendations