Advertisement

FlexiDex: Flexible Indexing for Similarity Search with Logic-Based Query Models

  • Marcel Zierenberg
  • Maria Bertram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8133)

Abstract

The flexibility of an indexing approach plays an important role for its applicability, especially for logic-based similarity search. A flexible approach allows the use of the same precomputed index structure even if query elements like weights, operators, monotonicity or used features of the aggregation function change in the search process (e.g., when using relevance feedback). While stateof- the-art approaches typically fulfill some of the needed flexibility requirements, none provides all of them. Consequently, this paper present FlexiDex , an efficient indexing approach for logic-based similarity search that is more flexible and also more efficient than known techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: Fuzzy Logic. Computer 21, 83–93 (1988)CrossRefGoogle Scholar
  2. 2.
    Schmitt, I.: QQL: A DB&IR Query Language. The VLDB Journal 17, 39–56 (2008)CrossRefGoogle Scholar
  3. 3.
    Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2001, pp. 102–113. ACM, Santa Barbara (2001)Google Scholar
  4. 4.
    Bustos, B., Kreft, S., Skopal, T.: Adapting Metric Indexes for Searching in Multi-Metric Spaces. Multimedia Tools Appl. 58(3), 467–496 (2012)CrossRefGoogle Scholar
  5. 5.
    Weber, R., Schek, H.-J., Blott, S.: A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces. In: Proceedings of the 24th International Conference on Very Large Data Bases, VLDB 1998, pp. 194–205. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  6. 6.
    Ciaccia, P., Patella, M.: The M2-Tree: Processing Complex Multi-Feature Queries with Just One Index. In: DELOS Workshop: Information Seeking, Searching and Querying in Digital Libraries (2000)Google Scholar
  7. 7.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers Inc., San Francisco (2005)Google Scholar
  8. 8.
    Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, SIGMOD 1984, pp. 47–57. ACM, Boston (1984)CrossRefGoogle Scholar
  9. 9.
    Böhm, K., Mlivoncic, M., Schek, H.-J., Weber, R.: Fast Evaluation Techniques for Complex Similarity Queries. In: Proceedings of the 27th International Conference on Very Large Data Bases, VLDB 2001, pp. 211–220. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  10. 10.
    Ciaccia, P., Patella, M., Zezula, P.: M-Tree: An Efficient Access Method for Similarity Search in Metric Spaces. In: Proceedings of 23rd International Conference on Very Large Data Bases, VLDB 1997, pp. 426–435. Morgan Kaufmann, Athens (1997)Google Scholar
  11. 11.
    Micó, M.L., Oncina, J., Vidal, E.: A New Version of the Nearest-Neighbour Approximating and Eliminating Search Algorithm (AESA) with Linear Preprocessing Time and Memory Requirements. Pattern Recogn. Lett. 15, 9–17 (1994)CrossRefGoogle Scholar
  12. 12.
    Lange, D., Naumann, F.: Efficient Similarity Search: Arbitrary Similarity Measures, Arbitrary Composition. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 1679–1688. ACM, Glasgow (2011)Google Scholar
  13. 13.
    Ciaccia, P., Patella, M., Zezula, P.: Processing Complex Similarity Queries with Distance-Based Access Methods. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 9–23. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Balko, S., Schmitt, I.: Signature Indexing and Self-Refinement in Metric Spaces. Tech. rep. 06/12. Brandenburg University of Technology Cottbus, Institute of Computer Science (September 2012)Google Scholar
  15. 15.
    Bustos, B., Navarro, G., Chávez, E.: Pivot Selection Techniques for Proximity Searching in Metric Spaces. Pattern Recogn. Lett. 24, 2357–2366 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Zellhöfer, D., et al.: PythiaSearch: A Multiple Search Strategy-Supportive Multimedia Retrieval System. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, ICMR 2012, pp. 59:1–59:2. ACM, Hong Kong (2012)Google Scholar
  17. 17.
    Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Tech. rep. 7694. California Institute of Technology (2007)Google Scholar
  18. 18.
    Schmitt, I., Balko, S.: Filter Ranking in High-Dimensional Space. Data Knowl. Eng. 56, 245–286 (2006)CrossRefGoogle Scholar
  19. 19.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. Comput. Vision 40, 99–121 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Sikora, T.: The MPEG-7 Visual Standard for Content Description-An Overview. IEEE Transactions on Circuits and Systems for Video Technology 11(6), 696–702 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tamura, H., Mori, S., Yamawaki, T.: Texture Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man and Cybernetics 8(6) (1978)Google Scholar
  22. 22.
    Chatzichristofis, S.A., Boutalis, Y.S.: FCTH: Fuzzy Color and Texture Histogram - A Low Level Feature for Accurate Image Retrieval. In: Proceedings of the 2008 9th International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS 2008, pp. 191–196. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  23. 23.
    Stehling, R.O., Nascimento, M.A., Falcão, A.X.: A Compact and Efficient Image Retrieval Approach Based on Border/Interior Pixel Classification. In: Proceedings of the 11th International Conference on Information and Knowledge Management, CIKM 2002, pp. 102–109. ACM, McLean (2002)Google Scholar
  24. 24.
    Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in Metric Spaces. ACM Comput. Surv. 33, 273–321 (2001)CrossRefGoogle Scholar
  26. 26.
    Zellhöfer, D., Schmitt, I.: A User Interaction Model Based on the Principle of Polyrepresentation. In: Proceedings of the 4th Workshop for Ph.D. Students in Information and Knowledge Management, PIKM 2011, pp. 3–10. ACM, Glasgow (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcel Zierenberg
    • 1
  • Maria Bertram
    • 1
  1. 1.Institute of Computer Science, Information and Media Technology, Chair of Database and Information SystemsBrandenburg University of Technology CottbusCottbusGermany

Personalised recommendations