Rigidity of Origami Universal Molecules

  • John C. Bowers
  • Ileana Streinu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7993)


In a seminal paper from 1996 that marks the beginning of computational origami, R. Lang introduced TreeMaker, a method for designing origami crease patterns with an underlying metric tree structure. In this paper we address the foldability of paneled origamis produced by Lang’s Universal Molecule algorithm, a key component of TreeMaker.

We identify a combinatorial condition guaranteeing rigidity, resp. stability of the two extremal states relevant to Lang’s method: the initial flat, open state, resp. the folded origami base computed by Lang’s algorithm. The proofs are based on a new technique of transporting rigidity and flexibility along the edges of a paneled surface.


Dihedral Angle Edge Incident Outerplanar Graph Splitting Event Splitting Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bern, M.W., Hayes, B.: The complexity of flat origami. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (1996)Google Scholar
  2. 2.
    Bern, M.W., Hayes, B.: Origami embedding of piecewise-linear two-manifolds. Algorithmica 59(1), 3–15 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bowers, J.C., Streinu, I.: Lang’s universal molecule algorithm (video). In: Proc. 28th Symp. Computational Geometry, SoCG 2012 (2012)Google Scholar
  4. 4.
    Bowers, J.C., Streinu, I.: Lang’s universal molecule algorithm. Technical report, University of Massachusetts and Smith College (December 2011)Google Scholar
  5. 5.
    Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. Math. Pure et Appl. 5, 113–148 (1897)Google Scholar
  6. 6.
    Bricard, R.: Memoir on the theory of the articulated octahedron. Translation from the French original of [5] (March 2012)Google Scholar
  7. 7.
    Demaine, E.D., Demaine, M.L.: Computing extreme origami bases. Technical Report CS-97-22, Department of Computer Science, University of Waterloo (May 1997)Google Scholar
  8. 8.
    Demaine, E.D., Demaine, M.L., Lubiw, A.: Folding and one straight cut suffices. In: Proc. 10th Annual ACM-SIAM Sympos. Discrete Alg. (SODA 1999), pp. 891–892 (January 1999)Google Scholar
  9. 9.
    Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and Polyhedra. Cambridge University Press (2007)Google Scholar
  10. 10.
    Eppstein, D.: Faster circle packing with application to nonobtuse triangulations. International Journal of Computational Geometry and Applications 7(5), 485–491 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Farber, M.: Invitation to Topological Robotics. Zürich Lectures in Advanced Mathematics. European Mathematical Society (2008)Google Scholar
  12. 12.
    Lang, R.J.: A computational algorithm for origami design. In: Proceedings of the 12th Annual ACM Symposium on Computational Geometry, pp. 98–105 (1996)Google Scholar
  13. 13.
    Lang, R.J.: Treemaker 4.0: A program for origami design (1998)Google Scholar
  14. 14.
    Lang, R.J.: Origami design secrets: mathematical methods for an ancient art. A.K. Peters Series. A.K. Peters (2003)Google Scholar
  15. 15.
    Lang, R.J. (ed.): Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education. A.K. Peters (2009)Google Scholar
  16. 16.
    Panina, G., Streinu, I.: Flattening single-vertex origami: the non-expansive case. Computational Geometry: Theory and Applications 46(8), 678–687 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Streinu, I., Whiteley, W.: Single-vertex origami and spherical expansive motions. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 161–173. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Wang-Iverson, P., Lang, R.J., Yim, M.: Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education. Taylor and Francis (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John C. Bowers
    • 1
  • Ileana Streinu
    • 2
  1. 1.Department of Computer ScienceUniversity of MassachusettsAmherstUSA
  2. 2.Department of Computer ScienceSmith CollegeNorthamptonUSA

Personalised recommendations