Evolving an Harmonic Number Generator with ReNCoDe

  • Rui L. Lopes
  • Ernesto Costa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8154)


Evolutionary Algorithms (EA) are loosely inspired in the ideas of natural selection and genetics. Over the years some researchers have advocated the need of incorporating more ideas from biology into EAs, in particular with respect to the individuals’ representation and the mapping from the genotype to the phenotype. One of the first successful proposals in that direction was the Artificial Regulatory Network (ARN) model. Soon after some variants of the ARN with increased capabilities were proposed, namely the Regulatory Network Computational Device (ReNCoDe). In this paper we further study ReNCoDe, testing the implications of some design choices of the underlying ARN model. A Genetic Programming community-approved symbolic regression benchmark (the harmonic number) is used to compare the performance of the different alternatives.


genetic regulatory networks genotype-phenotype mapping genetic programming regression harmonic numbers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  2. 2.
    O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language. In: Genetic Programming. Kluwer Academic Publishers (2003)Google Scholar
  3. 3.
    Miller, J.F.: Cartesian Genetic Programming. Natural Computing Series. Springer (2011)Google Scholar
  4. 4.
    Ferreira, C.: Gene Expression Programming, 2nd edn. Springer (2006)Google Scholar
  5. 5.
    Lones, M.A., Tyrrell, A.M.: Biomimetic representation with genetic programming enzyme. Genetic Programming and Evolvable Machines 3(1), 193–217 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, ch. 4, pp. 43–62. Kluwer (2003)Google Scholar
  7. 7.
    Banzhaf, W., Beslon, G., Christensen, S., Foster, J., Képès, F., Lefort, V., Miller, J., Radman, M., Ramsden, J.: From artificial evolution to computational evolution: a research agenda. Nature Reviews Genetics 7(9), 729–735 (2006)CrossRefGoogle Scholar
  8. 8.
    Dwight Kuo, P., Banzhaf, W., Leier, A.: Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence. Bio Systems 85(3), 177–200 (2006)CrossRefGoogle Scholar
  9. 9.
    Nicolau, M., Schoenauer, M., Banzhaf, W.: Evolving Genes to Balance a Pole. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 196–207. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lopes, R.L., Costa, E.: The Regulatory Network Computational Device. Genetic Programming and Evolvable Machines 13(3), 339–375 (2012)CrossRefGoogle Scholar
  11. 11.
    McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaśkowski, W., Krawiec, K., Harper, R., De Jong, K.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, pp. 791–798 (2012)Google Scholar
  12. 12.
    White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genetic Programming and Evolvable Machines (December 2012)Google Scholar
  13. 13.
    Streeter, M.J.: Automated Discovery of Numerical Approximation Formulae via Genetic Programming. Ph.D. thesis, Worcester Polytechnic Institute, Worcester Polytechnic Institute (April 2001)Google Scholar
  14. 14.
    Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 275–299. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012), http://www.R-project.org
  16. 16.
    Field, A., Hole, G.: How to design and report experiments. Sage Publications London (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rui L. Lopes
    • 1
  • Ernesto Costa
    • 1
  1. 1.Polo II - Pinhal de MarrocosCenter for Informatics and Systems of the University of CoimbraCoimbraPortugal

Personalised recommendations