Synchronous Forest Substitution Grammars

  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8080)


The expressive power of synchronous forest (tree-sequence) substitution grammars (SFSG) is studied in relation to multi bottom-up tree transducers (MBOT). It is proved that SFSG have exactly the same expressive power as compositions of an inverse MBOT with an MBOT. This result is used to derive complexity results for SFSG and the fact that compositions of an MBOT with an inverse MBOT can compute tree translations that cannot be computed by any SFSG, although the class of tree translations computable by MBOT is closed under composition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput. Sci. 20(1), 33–93 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chiang, D.: An introduction to synchronous grammars. In: Proc. 44th ACL. Association for Computational Linguistics (2006), Part of a tutorial given with K. KnightGoogle Scholar
  3. 3.
    Dauchet, M.: Transductions de forêts — Bimorphismes de magmoïdes. Première thèse, Université de Lille (1977)Google Scholar
  4. 4.
    Engelfriet, J., Lilin, E., Maletti, A.: Composition and decomposition of extended multi bottom-up tree transducers. Acta Informatica 46(8), 561–590 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91(2), 57–67 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fülöp, Z., Kühnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree transducers. Theor. Comput. Sci. 347(1-2), 276–287 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)Google Scholar
  8. 8.
    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 1–68. Springer (1997)Google Scholar
  9. 9.
    Gildea, D.: On the string translations produced by multi bottom-up tree transducers. Computational Linguistics 38(3), 673–693 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Lilin, E.: Propriétés de clôture d’une extension de transducteurs d’arbres déterministes. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 280–289. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  12. 12.
    Maletti, A.: Compositions of extended top-down tree transducers. Inform. and Comput. 206(9-10), 1187–1196 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Maletti, A.: Why synchronous tree substitution grammars? In: Proc. HLT-NAACL. Association for Computational Linguistics, pp. 876–884 (2010)Google Scholar
  14. 14.
    Maletti, A.: An alternative to synchronous tree substitution grammars. J. Nat. Lang. Engrg. 17(2), 221–242 (2011)CrossRefGoogle Scholar
  15. 15.
    Maletti, A.: How to train your multi bottom-up tree transducer. In: Proc. 49th ACL, pp. 825–834. Association for Computational Linguistics (2011)Google Scholar
  16. 16.
    Radmacher, F.G.: An automata theoretic approach to rational tree relations. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 424–435. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Raoult, J.C.: Rational tree relations. Bull. Belg. Math. Soc. Simon Stevin 4(1), 149–176 (1997)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sun, J., Zhang, M., Tan, C.L.: A non-contiguous tree sequence alignment-based model for statistical machine translation. In: Proc. 47th ACL, pp. 914–922. Association for Computational Linguistics (2009)Google Scholar
  20. 20.
    Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: Proc. 25th ACL, pp. 104–111. Association for Computational Linguistics (1987)Google Scholar
  21. 21.
    Zhang, M., Jiang, H., Aw, A., Li, H., Tan, C.L., Li, S.: A tree sequence alignment-based tree-to-tree translation model. In: Proc. 46th ACL, pp. 559–567. Association for Computational Linguistics (2008)Google Scholar
  22. 22.
    Zhang, M., Jiang, H., Li, H., Aw, A., Li, S.: Grammar comparison study for translational equivalence modeling and statistical machine translation. In: Proc. 22nd CoLing, pp. 1097–1104. Association for Computational Linguistics (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.Institute for Natural Language ProcessingUniversität StuttgartStuttgartGermany

Personalised recommendations