Quantitative Analysis of Randomized Distributed Systems and Probabilistic Automata

  • Christel Baier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8080)

Abstract

The automata-based model checking approach for randomized distributed systems relies on an operational interleaving semantics of the system by means of a Markov decision process (MDP) and a formalization of the desired event E by an ω-regular linear-time property, e.g., an LTL formula. The task is then to compute the greatest lower bound for the probability for E that can be guaranteed even in worst-case scenarios. Such bounds can be computed by a combination of polynomially time-bounded graph algorithm with methods for solving linear programs.

References

  1. 1.
    Baier, C., Größer, M., Bertrand, N.: Probabilistic -automata. Journal of the ACM 59(1) (2012)Google Scholar
  2. 2.
    Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic systems. In: 1st International Conference on Quantitative Evaluation of Systems (QEST), pp. 230–239. IEEE Computer Society (2004)Google Scholar
  3. 3.
    Baier, C., Größer, M., Ciesinski, F.: Model checking linear-time properties of probabilistic systems. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer Science, pp. 519–570. Springer (2009)Google Scholar
  4. 4.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Partial order reduction for probabilistic systems: A revision for distributed schedulers. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Größer, M.: Reduction Methods for Probabilistic Model Checking. Dissertation, Technische Universität Dresden (2008)Google Scholar
  7. 7.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: 1st IEEE Symposium on Logic in Computer Science (LICS), pp. 332–345. IEEE Computer Society Press (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christel Baier
    • 1
  1. 1.Faculty of Computer ScienceTechnische Universität DresdenGermany

Personalised recommendations