On a Conjecture of Helleseth

  • Yves Aubry
  • Philippe Langevin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8080)


We are concerned about a conjecture proposed in the middle of the seventies by Hellesseth in the framework of maximal sequences and theirs cross-correlations. The conjecture claims the existence of a zero outphase Fourier coefficient. We give some divisibility properties in this direction.


Boolean Function Fourier Spectrum Cyclic Code Maximal Sequence Almost Perfect Nonlinear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Dillon, J.F.: Elementary Hadamard Difference Sets. PhD thesis, Univ. of Maryland (1974)Google Scholar
  3. 3.
    Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discrete Math. 16(3), 209–232 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Katz, D.J.: Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth. J. Comb. Theory, Ser. A 119(8), 1644–1659 (2012)zbMATHCrossRefGoogle Scholar
  5. 5.
    Katz, N., Livné, R.: Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3. C. R. Acad. Sci. Paris Sér. I Math. 309(11), 723–726 (1989)zbMATHGoogle Scholar
  6. 6.
    Kavut, S., Maitra, S., Yücel, M.D.: Search for boolean functions with excellent profiles in the rotation symmetric class. IEEE Transactions on Information Theory 53(5), 1743–1751 (2007)CrossRefGoogle Scholar
  7. 7.
    Keijo, K., Marko, R.A., Keijoe, V.: On integer value of Kloosterman sums. IEEE Trans. Info. Theory (2010)Google Scholar
  8. 8.
    Lachaud, G., Wolfmann, J.: Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2. C. R. Acad. Sci. Paris Sér. I Math. 305, 881–883 (1987)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lang, S.: Cyclotomic fields I and II, 2nd edn. Graduate Texts in Mathematics, vol. 121. Springer, New York (1990), With an appendix by Karl RubinGoogle Scholar
  10. 10.
    Langevin, P.: Numerical projects page (2007),
  11. 11.
    Pursley, M.B., Sarwate, D.V.: Cross correlation properties of pseudo-random and related sequences. Proc. IEEE 68, 593–619 (1980)CrossRefGoogle Scholar
  12. 12.
    Tao, F.: On cyclic codes of length \({2^{2^r}-1}\) with two zeros whose dual codes have three weights. Designs, Codes and Cryptography 62(3) (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yves Aubry
    • 1
    • 2
  • Philippe Langevin
    • 1
  1. 1.Institut de Mathématiques de ToulonUniversité du Sud Toulon-VarFrance
  2. 2.Insitut de Mathématiques de LuminyUniversité d’Aix-MarseilleFrance

Personalised recommendations