Finding Semi-Automatically a Greatest Common Model Thanks to Formal Concept Analysis

  • Bastien AmarEmail author
  • Abdoulkader Osman Guédi
  • André Miralles
  • Marianne Huchard
  • Thérèse Libourel
  • Clémentine Nebut
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 141)


Data integration and knowledge capitalization combine data and information coming from different data sources designed by different experts having different purposes. In this paper, we propose to assist the underlying model merging activity. For close models made by experts of various specialities on the same system, we partially automate the identification of a Greatest Common Model (GCM) which is composed of the common concepts (core-concepts) of the different models. Our methodology is based on Formal Concept Analysis which is a method of data analysis based on lattice theory. A decision tree allows to semi-automatically classify concepts from the concept lattices and assist the GCM extraction. We apply our approach on the EIS-Pesticide project, an environmental information system which aims at centralizing knowledge and information produced by different research teams.


Formal concept analysis Greatest common model Information system Environmental information system Model factorization Core-concept Measuring station Pesticide 


  1. 1.
    Pinet, F., Miralles, A., Bimonte, S., Vernier, F., Carluer, N., Gouy, V., Bernard, S.: The use of uml to design agricultural data warehouses. In: International Conference on Agricultural Engineering (AgEng 2010), pp. 1–10 (2010)Google Scholar
  2. 2.
    Miralles, A., Pinet, F., Carluer, N., Vernier, F., Bimonte, S., Lauvernet, C., Gouy, V.: EIS-Pesticide: an information system for data and knowledge capitalization and analysis. In: Euraqua-PEER Scientific Conference 1, 26 Oct 2011–28 Oct 2011, Montpellier, FRA (2011)Google Scholar
  3. 3.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer, Berlin (1999)CrossRefGoogle Scholar
  4. 4.
    Birkhoff, G.: Lattice theory. American Mathematical Society, Providence (1940)Google Scholar
  5. 5.
    Osman Guedi, A., Miralles, A., Huchard, M., Nebut, C.: Analyse de l’évolution d’un modèle : vers une méthode basée sur l’analyse formelle de concepts. In: XXIXème Congrès INFORSID (2011)Google Scholar
  6. 6.
    Falleri, J.R.: Contributions à l’IDM : reconstruction et alignement de modèles de classes. Ph.D. thesis, Université Montpellier 2 (2009)Google Scholar
  7. 7.
    Rouane, M.H., Dao, M., Huchard, M., Valtchev, P.: Aspects de la réinginierie des modèles uml par analyse de données relationnelles. Ingénierie des Systèmes d’information (RSTI série) 12, 39–68 (2007)CrossRefGoogle Scholar
  8. 8.
    Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using galois lattices. In: Eighth Annual Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pp. 394–410 (1993)Google Scholar
  9. 9.
    Dao, M., Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Towards practical tools for mining abstractions in uml models. In: International Conference on Enterprise Information Systems: Databases and Information Systems Integration (ICEIS 2006), pp. 276–283 (2006)Google Scholar
  10. 10.
    Arévalo, G., Falleri, J.-R., Huchard, M., Nebut, C.: Building abstractions in class models: Formal concept analysis in a model-driven approach. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 513–527. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches. Int. J. Web Inf. Syst. 5, 271–304 (2009)CrossRefGoogle Scholar
  12. 12.
    Altmanninger, K., Schwinger, W., Kotsis, G.: Semantics for accurate conflict detection in smover: Specification, detection and presentation by example. Int. J. Enterp. Inf. Syst. 6, 68–84 (2010)CrossRefGoogle Scholar
  13. 13.
    Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing model conflicts in distributed development. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Cicchetti, A., Ruscio, D.D., Pierantonio, A.: A metamodel independent approach to difference representation. J. Object Technol. 6, 165–185 (2007)CrossRefGoogle Scholar
  15. 15.
    Ohst, D., Welle, M., Kelter, U.: Differences between versions of uml diagrams. SIGSOFT Softw. Eng. Notes 28, 227–236 (2003)CrossRefGoogle Scholar
  16. 16.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. In: Semantic Interoperability and Integration (2005)Google Scholar
  17. 17.
    Bendaoud, R., Napoli, A., Toussaint, Y.: Formal Concept Analysis: A unified framework for building and refining ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 156–171. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Stumme, G., Maedche, A.: Ontology merging for federated ontologies on the semantic web. In: International Workshop for Foundations of Models for Information, Integration (FMII-2001), pp. 413–418 (2001)Google Scholar
  19. 19.
    Formica, A.: Ontology-based concept similarity in Formal Concept Analysis. Inf. Sci. 176, 2624–2641 (2006)CrossRefGoogle Scholar
  20. 20.
    Tatsiopoulos, C., Boutsinas, B.: Ontology mapping based on association rule mining. In: International Conference on Enterprise Information Systems: Databases and Information Systems Integration (ICEIS 2009), pp. 33–40 (2009)Google Scholar
  21. 21.
    Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Comput. Surv. 18, 323–364 (1986)CrossRefGoogle Scholar
  22. 22.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J 10, 334–350 (2001)CrossRefGoogle Scholar
  23. 23.
    Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41, 166–178 (1998)CrossRefGoogle Scholar
  25. 25.
    Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief survey. AI Mag. 26, 83–94 (2005)Google Scholar
  26. 26.
    Miralles, A., Gorretta, N., Miller, P.C., Walklate, P., Van Zuydam, R.P., Porskamp, H.A., Ganzelmeier, H., Rietz, S., Ade, G., Balsari, P., Vannucci, D., Planas, S.: Orchard sprayers:an european program to compare testing methods. In: International Symposium on Fruit Nut and Vegetable Production Production Engineering, Valencia Zaragoza, ESP, 22–26 mars 1993, pp. 117–122 (1994)Google Scholar
  27. 27.
    Miralles, A., Polvêche, V.: Effects of the agrochemical products and adjuvants on spray quality and drift potential. In: 5th International Symposium on Adjuvants for Agrochemicals - ISAA ’98, Vol. 1, Memphis (USA), pp. 426–432 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bastien Amar
    • 1
    Email author
  • Abdoulkader Osman Guédi
    • 1
    • 2
    • 3
  • André Miralles
    • 1
    • 3
  • Marianne Huchard
    • 3
  • Thérèse Libourel
    • 4
  • Clémentine Nebut
    • 3
  1. 1.Tetis/IRSTEAMaison de la TélédétectionMontpellier Cedex 5France
  2. 2.Université de DjiboutiDjiboutiDjibouti (REP)
  3. 3.LIRMMUniversity of Montpellier 2 et CNRS Montpellier Cedex 5France
  4. 4.Espace DevMaison de la Télédétection Montpellier Cedex 5France

Personalised recommendations