A New Heuristic for the Capacitated Vertex p-Center Problem

  • Dagoberto R. Quevedo-Orozco
  • Roger Z. Ríos-Mercado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8109)

Abstract

A metaheuristic for the capacitated vertex p-center problem is presented. This is a well-known location problem that consists of placing p facilities and assigning customers to these in such a way that the largest distance between any customer and its associated facility is minimized. In addition, a capacity on demand for each facility is considered. The proposed metaheuristic framework integrates several components such as a greedy randomized adaptive procedure with biased sampling in its construction phase and iterated greedy with a variable neighborhood descent in its local search phase. The overall performance of the heuristic is numerically assessed on widely used benchmarks on location literature. The results indicate the proposed heuristic outperforms the best existing heuristic.

Keywords

Combinatorial optimization discrete location metaheuristics GRASP IGLS VND 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems, Part I: The p-centers. SIAM Journal on Applied Mathematics 37, 513–538 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Elloumi, S., Labbé, M., Pochet, Y.: A new formulation and resolution method for the p-center problem. INFORMS Journal on Computing 16(1), 84–94 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Özsoy, F.A., Pınar, M.Ç.: An exact algorithm for the capacitated vertex p-center problem. Computers & Operations Research 33(5), 1420–1436 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Albareda-Sambola, M., Díaz-García, J.A., Fernández, E.: Lagrangean duals and exact solution to the capacitated p-center problem. European Journal of Operational Research 201(1), 71–81 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Scaparra, M.P., Pallottino, S., Scutellà, M.G.: Large-scale local search heuristics for the capacitated vertex p-center problem. Networks 43(4), 241–255 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6(2), 109–133 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177(3), 2033–2049 (2007)CrossRefMATHGoogle Scholar
  8. 8.
    Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics, 2nd edn. International Series in Operations Research & Management Science, vol. 146. Springer, New York (2010)MATHGoogle Scholar
  10. 10.
    Dyer, M.E., Frieze, A.: A simple heuristic for the p-center problem. Operations Research Letters 3(6), 285–288 (1985)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bresina, J.L.: Heuristic-biased stochastic sampling. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI 1996, Portland, USA, vol. 1, pp. 271–278. AAAI Press (1996)Google Scholar
  12. 12.
    Loosemore, S., Stallman, R.M., McGrath, R., Oram, A., Drepper, U.: The GNU C Library Reference Manual: For version 2.17. Free Software Foundation, Boston, USA (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dagoberto R. Quevedo-Orozco
    • 1
  • Roger Z. Ríos-Mercado
    • 1
  1. 1.Graduate Program in Systems EngineeringUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico

Personalised recommendations