Advertisement

Automatic Generation and Delivery of Multiple-Choice Math Quizzes

  • Ana Paula Tomás
  • José Paulo Leal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)

Abstract

We present an application of constraint logic programming to create multiple-choice questions for math quizzes. Constraints are used for the configuration of the generator, giving the user some flexibility to customize the forms of the expressions arising in the exercises. Constraints are also used to control the application of the buggy rules in the derivation of plausible wrong solutions to the quiz questions. We developed a prototype based on the core system of AGILMAT [18]. For delivering math quizzes to students, we used an automatic evaluation feature of Mooshak [8] that was improved to handle math expressions. The communication between the two systems - AgilmatQuiz and Mooshak - relies on a specially designed \(\mbox{\LaTeX}\) based quiz format. This tool is being used at our institution to create quizzes to support assessment in a PreCalculus course for first year undergraduate students.

Keywords

Correct Answer Automatic Generation Cardinality Constraint Primitive Function Constraint Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeson, M.: Design Principles of Mathpert: Software to Support Education in Algebra and Calculus. In: Kajler, N. (ed.) Computer-Human Interaction in Symbolic Computation, Texts and Monographs in Symbolic Computation, pp. 89–115. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Bradford, R., Davenport, J.H., Sangwin, C.J.: A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp. 75–89. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Cervone, D.: MathJax – A Platform for Mathematics on the Web. Notices of the AMS 59, 312–316 (2012)zbMATHGoogle Scholar
  4. 4.
    Faltings, B., Macho-Gonzalez, S.: Open Constraint Programming. Artificial Intelligence 161, 181–208 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goguadze, G.: ActiveMath – Generation and Reuse of Interactive Exercises using Domain Reasoners and Automated Tutorial Strategies. PhD thesis, Saarland University (2011)Google Scholar
  6. 6.
    Haladyna, T.M., Downing, S.M.: A Taxonomy of Multiple-Choice Item-Writing Rules. Applied Measurement in Education 2, 37–50 (1989)CrossRefGoogle Scholar
  7. 7.
    Junker, U.: Configuration. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 835–871. Elsevier (2006)Google Scholar
  8. 8.
    Leal, J.P., Silva, F.: Mooshak: a Web-based Multi-site Programming Contest System. Software – Practice and Experience 33, 567–581 (2003)CrossRefGoogle Scholar
  9. 9.
    Maher, J.M.: Open Contractible Global Constraints. In: 21st International Joint Conf. on Artificial Intelligence, IJCAI 2009, pp. 578–583. Morgan Kaufmann Publishers, USA (2009)Google Scholar
  10. 10.
    Moses, J.: Algebraic Simplification: a Guide for the Perplexed. Communications of the ACM 14, 527–537 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pinto, J.S., Oliveira, M.P., Anjo, A.B., Vieira Pais, S.I., Isidro, R.O., Silva, M.H.: TDmat-Mathematics Diagnosis Evaluation Test for Engineering Sciences Students. Int. J. Mathematical Education in Science and Technology 38, 283–299 (2007)CrossRefGoogle Scholar
  12. 12.
    Sangwin, C.J., Grove, M.J.: STACK – Addressing the Needs of the “Neglected Learners”. In: 1st WebAlt Conference and Exhibition, pp. 81–95 (2006)Google Scholar
  13. 13.
    Sangwin, C.: Computer Aided Assessment of Mathematics. Oxford University Press (2013)Google Scholar
  14. 14.
    Schoenfeld, A.H. (ed.): Assessing Mathematical Proficiency. Cambridge University Press (2007)Google Scholar
  15. 15.
    Snajder, J., Cupic, M., Basic, B.D., Petrovic, S.: Enthusiast: An Authoring Tool for Automatic Generation of Paper-and-Pencil Multiple-Choice Tests. In: ICL 2008, Villach, Austria (2008)Google Scholar
  16. 16.
    Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., Silver, B.: Solving symbolic equations with Press. Journal of Symbolic Computation 7, 71–84 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tomás, A.P., Leal, J.P.: A CLP-Based Tool for Computer Aided Generation and Solving of Maths Exercises. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 223–240. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Tomás, A.P., Leal, J.P., Domingues, M.: A Web Application for Mathematics Education. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 380–391. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    van Hoeve, W.-J., Régin, J.-C.: Open Constraints in a Closed World. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 244–257. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Xiao, G.: WIMS – An Interactive Mathematics Server. Journal of Online Mathematics and its Applications 1, MAA (2001)Google Scholar
  21. 21.
    Zinn, C.: Supporting Tutorial Feedback to Student Help Requests and Errors in Symbolic Differentiation. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 349–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Zinn, C.: Program Analysis and Manipulation to Reproduce Learners’ Erroneous Reasoning. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 228–243. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    LeActiveMath: Language-Enhanced, User Adaptive, Interactive eLearning for Mathematics, EU project (2004–2006), http://www.leactivemath.org/
  24. 24.
    Math-Bridge: European Remedial Content for Mathematics, EU project (2009–2012), http://www.math-bridge.org/
  25. 25.
    PmatE – Mathematics Education Project. University of Aveiro, Portugal (1990), http://pmate4.ua.pt/pmate/
  26. 26.
    SICStus Prolog. SICS, Sweden, http://www.sics.se
  27. 27.
    STACK: System for Teaching and Assessment using a Computer algebra Kernel. University of Birmingham, UK, http://www.stack.bham.ac.uk/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Paula Tomás
    • 1
  • José Paulo Leal
    • 2
  1. 1.DCC & CMUP, Faculdade de CiênciasUniversidade do PortoPortugal
  2. 2.DCC & CRACS-INESC TEC, Faculdade de CiênciasUniversidade do PortoPortugal

Personalised recommendations