Constraint Based Computation of Periodic Orbits of Chaotic Dynamical Systems

  • Alexandre Goldsztejn
  • Laurent Granvilliers
  • Christophe Jermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)


The chaos theory emerged at the end of the 19th century, and it has given birth to a deep mathematical theory in the 20th century, with a strong practical impact (e.g., weather forecast, turbulence analysis). Periodic orbits play a key role in understanding chaotic systems. Their rigorous computation provides some insights on the chaotic behavior of the system and it enables computer assisted proofs of chaos related properties (e.g., topological entropy).

In this paper, we show that the (numerical) constraint programming framework provides a very convenient and efficient method for computing periodic orbits of chaotic dynamical systems: Indeed, the flexibility of CP modeling allows considering various models as well as including additional constraints (e.g., symmetry breaking constraints). Furthermore, the richness of the different solving techniques (tunable local propagators, search strategies, etc.) leads to highly efficient computations. These strengths of the CP framework are illustrated by experimental results on classical chaotic systems from the literature.


Chaotic dynamical systems periodic orbits topological entropy numerical constraint satisfaction symmetry breaking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arai, Z.: On hyperbolic plateaus of the Hénon map. Journal Experimental Mathematics 16(2), 181–188 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Araya, I., Trombettoni, G., Neveu, B.: Exploiting monotonicity in interval constraint propagation. In: AAAI (2010)Google Scholar
  3. 3.
    Banhelyi, B., Csendes, T., Garay, B., Hatvani, L.: A computer-assisted proof of σ 3-chaos in the forced damped pendulum equation. SIAM Journal on Applied Dynamical Systems 7, 843–867 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: ICLP, pp. 230–244 (1999)Google Scholar
  5. 5.
    Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(Intervals) revisited. In: Procs. Intl. Symp. on Logic Prog., pp. 124–138. The MIT Press (1994)Google Scholar
  6. 6.
    Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-Yorke pairs. Journal für die reine und angewandte Mathematik 2002(547), 51–68 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Crofts, J.J., Davidchack, R.L.: Efficient detection of periodic orbits in chaotic systems by stabilizing transformations. SIAM J. Sci. Comput. 28(4), 1275–1288 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Davidchack, R.L., Lai, Y.C., Klebanoff, A., Bollt, E.M.: Towards complete detection of unstable periodic orbits in chaotic systems. Physics Letters A 287(12), 99–104 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Galias, Z.: Interval methods for rigorous investigations of periodic orbits. International Journal of Bifurcation and Chaos 11(09), 2427–2450 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Galias, Z.: Rigorous investigation of the Ikeda map by means of interval arithmetic. Nonlinearity 15(6), 1759 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Galias, Z.: Computational methods for rigorous analysis of chaotic systems. In: Kocarev, L., Galias, Z., Lian, S. (eds.) Intelligent computing based on chaos. SCI, vol. 184, pp. 25–51. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Gao, F., Gao, H., Li, Z., Tong, H., Lee, J.J.: Detecting unstable periodic orbits of nonlinear mappings by a novel quantum-behaved particle swarm optimization non-Lyapunov way. Chaos, Solitons & Fractals 42(4), 2450–2463 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Goldsztejn, A., Hayes, W., Collins, P.: Tinkerbell is chaotic. SIAM Journal on Applied Dynamical Systems 10(4), 1480–1501 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goldsztejn, A., Jermann, C., Ruiz de Angulo, V., Torras, C.: Symmetry breaking in numeric constraint problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 317–324. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Mathematical Software 32(1), 138–156 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hénon, M.: A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics 50, 69–77 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ikeda, K.: Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. In: Opt. Comm., pp. 257–261 (1979)Google Scholar
  18. 18.
    Ishii, D., Goldsztejn, A., Jermann, C.: Interval-based projection method for under-constrained numerical systems. Constraints 17(4), 432–460 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kapela, T., Simó, C.: Computer assisted proofs for nonsymmetric planar choreographies and for stability of the Eight. Nonlinearity 20(5), 1241 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press (1995)Google Scholar
  21. 21.
    Kolyada, S.F.: Li-Yorke sensitivity and other concepts of chaos. Ukrainian Mathematical Journal 56(8), 1242–1257 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lhomme, O.: Consistency techniques for numeric CSPs. In: IJCAI, pp. 232–238 (1993)Google Scholar
  23. 23.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)CrossRefGoogle Scholar
  24. 24.
    Moore, R.: Interval Analysis. Prentice-Hall (1966)Google Scholar
  25. 25.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press (1990)Google Scholar
  26. 26.
    Parsopoulos, K., Vrahatis, M.: Computing periodic orbits of nondifferentiable/discontinuous mappings through particle swarm optimization. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp. 34–41 (2003)Google Scholar
  27. 27.
    Sella, L., Collins, P.: Computation of symbolic dynamics for one-dimensional maps. J. Comput. Appl. Math. 234(2), 418–436 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2, 53–117 (2002)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wilczak, D., Zgliczynski, P.: Computer Assisted Proof of the Existence of Homoclinic Tangency for the Hénon Map and for the Forced Damped Pendulum. SIAM Journal on Applied Dynamical Systems 8, 1632–1663 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexandre Goldsztejn
    • 1
  • Laurent Granvilliers
    • 2
  • Christophe Jermann
    • 2
  1. 1.LINA (UMR-6241)CNRSFrance
  2. 2.LINA (UMR-6241)Université de NantesNantesFrance

Personalised recommendations