The Objective-CP Optimization System

  • Pascal Van Hentenryck
  • Laurent Michel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)


Objective-CP is an optimization system that views an optimization program as the combination of a model, a search, and a solver. Models in Objective-CP follow the modeling style of constraint programming and are concretized into specific solvers. Search procedures are specified in terms of high-level nondeterministic constructs, search combinators, and node selection strategies. Objective-CP supports fully transparent parallelization of multi-start and branch & bound algorithms. The implementation of Objective-CP is based on a sequence of model transformations, followed by a concretization step. Moreover, Objective-CP features a constraint-programming solver following a micro-kernel architecture for ease of maintenance and extensibility. Experimental results show the practicability of the approach.


Model Transformation Search Procedure Constraint Programming Optimization Program Large Neighborhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising hull and box consistency. In: ICLP, pp. 230–244 (1999)Google Scholar
  2. 2.
    Concert Technology. Reference Manual, version 12.1 (2009)Google Scholar
  3. 3.
    Inc. Dynadec. Comet v2.1 user manual. Technical report, Providence, RI (2009)Google Scholar
  4. 4.
    Fontaine, D., Michel, L., Van Hentenryck, P.: Model Combinators for Hybrid Optimization. In: Schlte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 299–314. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Fontaine, D., Michel, L.: A High Level Language for Solver Independent Model Manipulation and Generation of Hybrid Solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 180–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 77–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Van Hentenryck, P., Michel, L.: The Steel Mill Slab Design Problem Revisited. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 377–381. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. John Wiley and Sons (2000)Google Scholar
  10. 10.
    Ilog Solver 4.4. Reference Manual. Ilog SA, Gentilly, France (1998)Google Scholar
  11. 11.
    Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 514–528. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Michel, L., See, A., Van Hentenryck, P.: Transparent Parallelization of Constraint Programming. INFORMS Journal on Computing 21(3), 363–382 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Perron, L.: Search Procedures and Parallelism in Constraint Programming. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Puget, J.-F.: A C++ Implementation of CLP. In: Proceedings of SPICIS 1994, Singapore (November 1994)Google Scholar
  16. 16.
    Refalo, P.: Linear Formulation of Constraint Programming Models and Hybrid Solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.: Search Combinators. Constraints 18(2), 269–305 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schulte, C., Tack, G.: View-Based Propagator Derivation. Constraints 18(1), 75–107 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. The MIT Press, Cambridge (1989)Google Scholar
  20. 20.
    Van Hentenryck, P.: The OPL Optimization Programming Language. The MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Van Hentenryck, P., Michel, L.: OPL Script: Composing and Controlling Models. In: Apt, K.R., Kakas, A.C., Monfroy, E., Rossi, F. (eds.) Compulog Net WS 1999. LNCS (LNAI), vol. 1865, pp. 75–90. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Van Hentenryck, P., Michel, L.: Nondeterministic Control for Hybrid Search. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 380–395. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for Global Optimization. The MIT Press, Cambridge (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pascal Van Hentenryck
    • 1
  • Laurent Michel
    • 2
  1. 1.NICTAAustralia
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations