Dead-End Elimination for Weighted CSP

  • Simon de Givry
  • Steven D. Prestwich
  • Barry O’Sullivan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)


Soft neighborhood substitutability (SNS) is a powerful technique to automatically detect and prune dominated solutions in combinatorial optimization. Recently, it has been shown in [26] that enforcing partial SNS (PSNS r ) during search can be worthwhile in the context of Weighted Constraint Satisfaction Problems (WCSP). However, for some problems, especially with large domains, PSNS r is still too costly to enforce due to its worst-case time complexity in O(ned 4) for binary WCSP. We present a simplified dominance breaking constraint, called restricted dead-end elimination (DEE r ), the worst-case time complexity of which is in O(ned 2). Dead-end elimination was introduced in the context of computational biology as a preprocessing technique to reduce the search space [13, 14, 16, 17, 28, 30]. Our restriction involves testing only one pair of values per variable instead of all the pairs, with the possibility to prune several values at the same time. We further improve the original dead-end elimination criterion, keeping the same time and space complexity as DEE r . Our results show that maintaining DEE r during a depth-first branch and bound (DFBB) search is often faster than maintaining PSNS r and always faster than or similar to DFBB alone.


combinatorial optimization dominance rule weighted constraint satisfaction problem soft neighborhood substitutability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allouche, D., Traoré, S., André, I., de Givry, S., Katsirelos, G., Barbe, S., Schiex, T.: Computational protein design as a cost function network optimization problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 840–849. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bensana, E., Lemaître, M., Verfaillie, G.: Earth observation satellite management. Constraints 4(3), 293–299 (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bistarelli, S., Faltings, B.V., Neagu, N.: Interchangeability in Soft CSPs. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency assignment. Constraints Journal 4, 79–89 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chu, G., Banda, M., Stuckey, P.: Exploiting subproblem dominance in constraint programming. Constraints 17(1), 1–38 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chu, G., Stuckey, P.J.: A generic method for identifying and exploiting dominance relations. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 6–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Cooper, M., Cussat-Blanc, S., de Roquemaurel, M., Régnier, P.: Soft arc consistency applied to optimal planning. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 680–684. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artificial Intelligence 174, 449–478 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.: Virtual arc consistency for weighted CSP. In: Proc. of AAAI 2008, Chicago, IL (2008)Google Scholar
  10. 10.
    Cooper, M.C.: High-order consistency in Valued Constraint Satisfaction. Constraints 10, 283–305 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cooper, M.C., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proc. of IJCAI 2007, Hyderabad, India, pp. 68–73 (January 2007)Google Scholar
  12. 12.
    Cooper, M.C., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154(1-2), 199–227 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dahiyat, B., Mayo, S.: Protein design automation. Protein Science 5(5), 895–903 (1996)CrossRefGoogle Scholar
  14. 14.
    Desmet, J., Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356(6369), 539–542 (1992)CrossRefGoogle Scholar
  15. 15.
    Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction problems. In: Proc. of AAAI 1991, Anaheim, CA, pp. 227–233 (1991)Google Scholar
  16. 16.
    Georgiev, I., Lilien, R., Donald, B.: Improved pruning algorithms and divide-and-conquer strategies for dead-end elimination, with application to protein design. Bioinformatics 22(14), e174–e183 (2006)Google Scholar
  17. 17.
    Goldstein, R.: Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical Journal 66(5), 1335–1340 (1994)CrossRefGoogle Scholar
  18. 18.
    Harvey, W.D., Ginsberg, M.L.: Limited discrepency search. In: Proc. of the 14th IJCAI, Montréal, Canada (1995)Google Scholar
  19. 19.
    Jouglet, A., Carlier, J.: Dominance rules in combinatorial optimization problems. European Journal of Operational Research 212(3), 433–444 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Koster, A.M.C.A.: Frequency assignment: Models and Algorithms. Ph.D. thesis, University of Maastricht, The Netherlands (November 1999),
  21. 21.
    Larrosa, J.: On arc and node consistency in weighted CSP. In: Proc. AAAI 2002, Edmondton (CA), pp. 48–53 (2002)Google Scholar
  22. 22.
    Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, Edinburgh, Scotland, pp. 84–89 (August 2005)Google Scholar
  23. 23.
    Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving. Artif. Intell. 172(2-3), 204–233 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell. 159(1-2), 1–26 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint programming. Artificial Intelligence 173, 1592–1614 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lecoutre, C., Roussel, O., Dehani, D.E.: WCSP Integration of Soft Neighborhood Substitutability. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 406–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a Universal Test Suite for Combinatorial Auction Algorithms. In: ACM E-Commerce, pp. 66–76 (2000)Google Scholar
  28. 28.
    Looger, L., Hellinga, H.: Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications for protein design and structural genomics. Journal of Molecular Biology 307(1), 429–445 (2001)CrossRefGoogle Scholar
  29. 29.
    Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithms 36(1), 63–88 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pierce, N., Spriet, J., Desmet, J., Mayo, S.: Conformational splitting: A more powerful criterion for dead-end elimination. Journal of Computational Chemistry 21(11), 999–1009 (2000)CrossRefGoogle Scholar
  31. 31.
    Schiex, T.: Arc consistency for soft constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 411–424. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simon de Givry
    • 1
    • 2
  • Steven D. Prestwich
    • 2
  • Barry O’Sullivan
    • 2
  1. 1.MIA-T, UR 875INRACastanet TolosanFrance
  2. 2.Cork Constraint Computation CentreUniversity College CorkIreland

Personalised recommendations