Advertisement

MinSAT versus MaxSAT for Optimization Problems

  • Josep Argelich
  • Chu-Min Li
  • Felip Manyà
  • Zhu Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)

Abstract

Despite their similarities, MaxSAT and MinSAT use different encodings and solving techniques to cope with optimization problems. In this paper we describe a new weighted partial MinSAT solver, define original MinSAT encodings for relevant combinatorial problems, propose a new testbed for evaluating MinSAT, report on an empirical investigation comparing MinSAT with MaxSAT, and provide new insights into the duality between MinSAT and MaxSAT.

Keywords

Inference Rule Minimal Support Constraint Satisfaction Problem Binary Constraint Unit Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial MaxSAT. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI 2008, Atlanta, USA, pp. 3–8 (2010)Google Scholar
  2. 2.
    Ansótegui, C., Li, C.M., Manyà, F., Zhu, Z.: A SAT-based approach to MinSAT. In: Proceedings of the 15th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2012, Alacant, Spain, pp. 185–189. IOS Press (2012)Google Scholar
  3. 3.
    Ansótegui, C., Manyà, F.: Mapping Problems with Finite-Domain Variables to Problems with Boolean Variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Sequential Encodings from Max-CSP into Partial Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 161–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Efficient encodings from CSP into SAT, and from MaxCSP into MaxSAT. Multiple-Valued Logic and Soft Computing 19(1-3), 3–23 (2012)MathSciNetGoogle Scholar
  6. 6.
    Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT evaluations. Journal on Satisfiability, Boolean Modeling and Computation 4, 251–278 (2008)zbMATHGoogle Scholar
  7. 7.
    Béjar, R., Hähnle, R., Manyà, F.: A modular reduction of regular logic to classical logic. In: Proceedings, 31st International Symposium on Multiple-Valued Logics (ISMVL), Warsaw, Poland, pp. 221–226. IEEE CS Press, Los Alamitos (2001)CrossRefGoogle Scholar
  8. 8.
    Culberson, J.: Graph coloring page: The flat graph generator (1995), http://web.cs.ualberta.ca/~joe/Coloring/Generators/flat.html
  9. 9.
    Gent, I.P.: Arc consistency in SAT. In: Proceedings of the 15th European Conference on Artificial Intelligence, ECAI, Lyon, France, pp. 121–125 (2002)Google Scholar
  10. 10.
    Gent, I.P., Nightingale, P.: A new encoding of AllDifferent into SAT. In: Proceedings of the 3rd International Workshop on Modelling and Reformulating Constraint Satisfaction Problems, CP 2004 Workshop, Toronto, Canada, pp. 95–110 (2004)Google Scholar
  11. 11.
    Heras, F., Morgado, A., Planes, J., Marques-Silva, J.: Iterative SAT solving for minimum satisfiability. In: Proceedings of the IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, pp. 922–927 (2012)Google Scholar
  12. 12.
    Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artificial Intelligence 45, 275–286 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kügel, A.: Natural Max-SAT encoding of Min-SAT. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 431–436. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted CSP. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2003, Acapulco, México, pp. 239–244 (2003)Google Scholar
  15. 15.
    Lecoutre, C., Tabary, S.: Abscon 112: Towards more robustness. In: Proceedings of the 3rd International Constraint Solver Competition in CP 2008 (2008)Google Scholar
  16. 16.
    Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 613–631. IOS Press (2009)Google Scholar
  17. 17.
    Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial Intelligence Research 30, 321–359 (2007)MathSciNetGoogle Scholar
  18. 18.
    Li, C.M., Manyà, F., Quan, Z., Zhu, Z.: Exact MinSAT solving. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 363–368. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability and its applications. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Spain, pp. 605–610 (2011)Google Scholar
  20. 20.
    Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Optimizing with minimum satisfiability. Artificial Intelligence 190, 32–44 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Smith, B.M., Dyer, M.E.: Locating the phase transition in binary constraint satisfaction problems. Artificial Intelligence 81, 155–181 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Zhu, Z., Li, C.-M., Manyà, F., Argelich, J.: A New Encoding from MinSAT into MaxSAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 455–463. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Josep Argelich
    • 1
  • Chu-Min Li
    • 2
  • Felip Manyà
    • 3
  • Zhu Zhu
    • 2
  1. 1.Dept. of Computer ScienceUniversitat de LleidaLleidaSpain
  2. 2.MISUniversité de Picardie Jules VerneAmiensFrance
  3. 3.Artificial Intelligence Research Institute (IIIA, CSIC)BellaterraSpain

Personalised recommendations