Advanced SAT Techniques for Abstract Argumentation

  • Johannes Peter Wallner
  • Georg Weissenbacher
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8143)


In the area of propositional satisfiability (SAT), tremendous progress has been made in the last decade. Today’s SAT technology covers not only the standard SAT problem, but also extensions thereof, such as computing a backbone (the literals which are true in all satisfying assignments) or minimal corrections sets (minimal subsets of clauses which if dropped leave an originally unsatisfiable formula satisfiable). In this work, we show how these methods can be applied to solve important problems from the area of abstract argumentation. In particular, we present new systems for semi-stable, ideal, and eager semantics. Our experimental results demonstrate the feasibility of this approach.


Abstract Argumentation Propositional Satisfiability Argumentation Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3-4), 413–436 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arieli, O., Caminada, M.W.A.: A QBF-based formalization of abstract argumentation semantics. J. Applied Logic 11(2), 229–252 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in Artificial Intelligence. Artif. Intell. 171(10-15), 619–641 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: NMR 2004, pp. 59–64 (2004)Google Scholar
  6. 6.
    Bistarelli, S., Santini, F.: Conarg: A constraint-based computational framework for argumentation systems. In: ICTAI 2011, pp. 605–612 (2011)Google Scholar
  7. 7.
    Caminada, M.W.A.: Comparing two unique extension semantics for formal argumentation: Ideal and eager. In: BNAIC 2007, pp. 81–87 (2007)Google Scholar
  8. 8.
    Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-stable Semantics. J. Log. Comput. 22(5), 1207–1254 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cartwright, D., Atkinson, K.: Using computational argumentation to support e-participation. IEEE Intelligent Systems 24(5), 42–52 (2009)CrossRefGoogle Scholar
  10. 10.
    Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: A SAT-based Approach for Computing Extensions on Abstract Argumentation. In: TAFA 2013 (2013)Google Scholar
  11. 11.
    Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Implementing Abstract Argumentation – A Survey. Technical Report DBAI-TR-2013-82, Vienna University of Technology (2013)Google Scholar
  12. 12.
    Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 154–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171(10-15), 642–674 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18), 1559–1591 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dvořák, W., Dunne, P.E., Woltran, S.: Parametric properties of ideal semantics. In: IJCAI 2011, pp. 851–856 (2011)Google Scholar
  17. 17.
    Dvořák, W., Gaggl, S.A., Szeider, S., Woltran, S.: Benchmark libraries for argumentation. In: Agreement Technologies, LGTS The Added Value of Argumentation, vol. 8, pp. 389–393. Springer (2013)Google Scholar
  18. 18.
    Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Making use of advances in answer-set programming for abstract argumentation systems. In: INAP 2011, pp. 117–130 (2011)Google Scholar
  19. 19.
    Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. In: KR 2012, pp. 54–64 (2012)Google Scholar
  20. 20.
    Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argument and Computation 1(2), 147–177 (2010)CrossRefGoogle Scholar
  22. 22.
    Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified boolean formulas. In: COMMA 2006. FAIA, vol. 144, pp. 133–144 (2006)Google Scholar
  23. 23.
    Faber, W., Woltran, S.: Manifold answer-set programs and their applications. In: Balduccini, M., Son, T.C. (eds.) LPNMR 2011. LNCS, vol. 6565, pp. 44–63. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 26(1), 53–62 (2012)CrossRefGoogle Scholar
  25. 25.
    Gabbay, D.M.: An equational approach to argumentation networks. Argument & Computation 3(2-3), 87–142 (2012)CrossRefGoogle Scholar
  26. 26.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 105–124 (2011)MathSciNetGoogle Scholar
  27. 27.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Malik, S., Weissenbacher, G.: Boolean satisfiability solvers: techniques and extensions. In: Software Safety and Security - Tools for Analysis and Verification. NATO Science for Peace and Security Series. IOS Press (2012)Google Scholar
  30. 30.
    Malik, S., Zhao, Y., Madigan, C.F., Zhang, L., Moskewicz, M.W.: Chaff: Engineering an efficient SAT solver. In: DAC 2001, pp. 530–535 (2001)Google Scholar
  31. 31.
    Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI 2013 (2013)Google Scholar
  32. 32.
    Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional theories. In: ECAI 2010. FAIA, vol. 215, pp. 15–20. IOS Press (2010)Google Scholar
  33. 33.
    Marques-Silva, J., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability. In: ICCAD 1996, pp. 220–227 (1996)Google Scholar
  34. 34.
    McBurney, P., Parsons, S., Rahwan, I. (eds.): ArgMAS 2011. LNCS, vol. 7543. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  35. 35.
    Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In: Workshop on Variability Modelling of Software-Intensive Systems, pp. 83–91. ACM (2012)Google Scholar
  36. 36.
    Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhu, C.S., Weissenbacher, G., Sethi, D., Malik, S.: SAT-based techniques for determining backbones for post-silicon fault localisation. In: HLDVT, pp. 84–91 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johannes Peter Wallner
    • 1
  • Georg Weissenbacher
    • 1
  • Stefan Woltran
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations