Assumption-Based Argumentation for Decision-Making with Preferences: A Medical Case Study

  • Xiuyi Fan
  • Robert Craven
  • Ramsay Singer
  • Francesca Toni
  • Matthew Williams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8143)

Abstract

We present a formal decision-making framework, where decisions have multiple attributes and meet goals, and preferences are defined over individual goals and sets of goals. We define decision functions to select ‘good’ decisions according to an underlying decision criteria. We also define an argumentation-based computational mechanism to compute and explain ‘good’ decisions. We draw connections between decision-making and argumentation semantics: ‘good’ decisions are admissible arguments in a corresponding argumentation framework. To show the applicability of our approach, we use medical literature selection as a case study. For a given patient description, we select the most relevant medical papers from the medical literature and explain the selection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Art. Int. 173(3-4) (2009)Google Scholar
  2. 2.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. JAIR 21, 135–191 (2004)MathSciNetMATHGoogle Scholar
  3. 3.
    Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Argumentation in AI, pp. 25–44. Springer (2009)Google Scholar
  4. 4.
    Dung, P.M., Thang, P.M., Toni, F.: Towards argumentation-based contract negotiation. In: Proc. COMMA (2008)Google Scholar
  5. 5.
    Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. AIJ 170, 114–159 (2006)MathSciNetMATHGoogle Scholar
  6. 6.
    Fan, X., Toni, F.: Decision making with assumption-based argumentation. In: Proc. TAFA (2013)Google Scholar
  7. 7.
    Fox, J., Glasspool, D., Patkar, V., Austin, M., Black, L., South, M., Robertson, D., Vincent, C.: Delivering clinical support services: There is nothing as practical as a good theory. J. of Biom. Inf. 43(5) (2010)Google Scholar
  8. 8.
    Fox, J., Krause, P., Elvang-Gøransson, M.: Argumentation as a general framework for uncertain reasoning. In: Proc. UAI, pp. 428–434 (1993)Google Scholar
  9. 9.
    Matt, P.-A., Toni, F., Vaccari, J.R.: Dominant decisions by argumentation agents. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS, vol. 6057, pp. 42–59. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Nawwab, F.S., Bench-Capon, T.J.M., Dunne, P.E.: A methodology for action-selection using value-based argumentation. In: Proc. COMMA, pp. 264–275 (2008)Google Scholar
  11. 11.
    Yoon, K.P., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction. Sage Publications Inc. (March 1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiuyi Fan
    • 1
  • Robert Craven
    • 1
  • Ramsay Singer
    • 2
  • Francesca Toni
    • 1
  • Matthew Williams
    • 1
  1. 1.Imperial College LondonLondonUK
  2. 2.University College HospitalLondonUK

Personalised recommendations