An Argumentation-Based Approach for Automatic Evaluation of Design Debates

  • Pietro Baroni
  • Marco Romano
  • Francesca Toni
  • Marco Aurisicchio
  • Giorgio Bertanza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8143)


This paper presents a novel argumentation framework to support design debates in an IBIS-based style, by providing an automatic evaluation of the positions put forwards in the debates. It also describes the integration of the proposed approach within the designVUE software tool along with two case studies in engineering design and their initial evaluation by domain experts.


argumentation design rationale IBIS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Atkinson, K., Bench-Capon, T.J.M., McBurney, P.: PARMENIDES: Facilitating deliberation in democracies. Artificial Intelligence and Law 14(4), 261–275 (2006)CrossRefGoogle Scholar
  3. 3.
    Aurisicchio, M., Bracewell, R.H.: Capturing an integrated design information space with a diagram based approach. Journal of Engineering Design 24, 397–428 (2013)CrossRefGoogle Scholar
  4. 4.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowledge Eng. Review 26(4), 365–410 (2011)CrossRefGoogle Scholar
  5. 5.
    Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2), 203–235 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buckingham Shum, S.J., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B., Nuseibeh, B.: Hypermedia support for argumentation-based rationale: 15 years on from gIBIS and QOC. In: Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (eds.) Rationale Management in Software Engineering, pp. 111–132. Springer (2006)Google Scholar
  7. 7.
    Buckingham Shum, S.J.: Cohere: Towards web 2.0 argumentation. In: Besnard, P., Doutre, S., Hunter, A. (eds.) Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, May 28-30. Frontiers in Artificial Intelligence and Applications, vol. 172, pp. 97–108. IOS Press (2008)Google Scholar
  8. 8.
    Cayrol, C., Lagasquie-Schiex, M.C.: Gradual valuation for bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 366–377. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–389. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: Basic definitions, algorithms, and complexity results. Artificial Intelligence 175(2), 457–486 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Evripidou, V., Toni, F.: Argumentation and voting for an intelligent user empowering business directory on the web. In: Proc. of the 6th Int. Conf. on Web Reasoning and Rule Systems (RR 2012), pp. 209–212 (2012)Google Scholar
  13. 13.
    Gabbay, D.M.: Equational approach to argumentation networks. Argument & Computation 3(2-3), 87–142 (2012)CrossRefGoogle Scholar
  14. 14.
    Gordon, T.F., Walton, D.: The Carneades argumentation framework - using presumptions and exceptions to model critical questions. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Computational Models of Argument: Proceedings of COMMA 2006, Liverpool, UK, September 11-12 (2006)Google Scholar
  15. 15.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer (2000)Google Scholar
  16. 16.
    Kunz, W., Rittel, H.: Issues as elements of information systems. Working Paper 131, Institute of Urban and Regional Development. University of California, Berkeley, California (1970)Google Scholar
  17. 17.
    Leite, J., Martins, J.: Social abstract argumentation. In: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 2287–2292 (2011)Google Scholar
  18. 18.
    Matt, P.-A., Toni, F.: A game-theoretic measure of argument strength for abstract argumentation. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 285–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Pahl, G., Beitz, W.: Engineering design: a systematic approach. Tech. rep., Design Council, London, UK (1984)Google Scholar
  20. 20.
    Pugh, S.: Total Design: Integrated Methods for Successful Product Engineering. Addison-Wesley (1991)Google Scholar
  21. 21.
    Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill (1980)Google Scholar
  22. 22.
    Simon, H.A.: The Sciences of the Artificial, 3rd edn. The MIT Press (1996)Google Scholar
  23. 23.
    Simon, H.A., Newell, A.: Human problem solving: The state of the theory in 1970. American Psychologist 26(2), 145–159 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pietro Baroni
    • 1
  • Marco Romano
    • 1
  • Francesca Toni
    • 2
  • Marco Aurisicchio
    • 2
  • Giorgio Bertanza
    • 1
  1. 1.Università degli Studi di BresciaItaly
  2. 2.Imperial College LondonUK

Personalised recommendations