Advertisement

Analyzing the Equivalence Zoo in Abstract Argumentation

  • Ringo Baumann
  • Gerhard Brewka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8143)

Abstract

Notions of equivalence which are stronger than standard equivalence in the sense that they also take potential modifications of the available information into account have received considerable interest in nonmonotonic reasoning. In this paper we focus on equivalence notions in argumentation. More specifically, we establish a number of new results about the relationships among various equivalence notions for Dung argumentation frameworks which are located between strong equivalence [1] and standard equivalence. We provide the complete picture for this variety of equivalence relations (which we call the equivalence zoo) for the most important semantics.

Keywords

Minimal Change Abstract Argumentation Argumentation Framework Local Expansion Nonmonotonic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation frameworks. Artificial Intelligence 175(14-15), 1985–2009 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer-set programming: Characterizations and complexity results for the non-ground case. In: Proc. AAAI 2005, pp. 695–700 (2005)Google Scholar
  4. 4.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelligence 171(10-15), 619–641 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baumann, R.: Normal and strong expansion equivalence for argumentation frameworks. Artificial Intelligence 193, 18–44 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baumann, R.: What does it take to enforce an argument? Minimal change in abstract argumentation. In: ECAI, pp. 127–132 (2012)Google Scholar
  8. 8.
    Baroni, P., Giacomin, M.: Characterizing defeat graphs where argumentation semantics agree. In: Simari, G.P.T. (ed.) 1st International Workshop on Argumentation and Non-Monotonic Reasoning, pp. 33–48 (2007)Google Scholar
  9. 9.
    Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonicity results. In: Proc. COMMA 2010, pp. 75–86. IOS Press (2010)Google Scholar
  10. 10.
    Baumann, R.: Splitting an argumentation framework. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 40–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation semantics. Artificial Intelligence 171(10-15), 675–700 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2), 203–235 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Amgoud, L., Vesic, S.: On the equivalence of logic-based argumentation systems. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 123–136. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proceedings KR 2010, pp. 102–111 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ringo Baumann
    • 1
  • Gerhard Brewka
    • 1
  1. 1.Informatics InstituteUniversity of LeipzigGermany

Personalised recommendations