Representation Learning for Cloud Classification

  • David Bernecker
  • Christian Riess
  • Vincent Christlein
  • Elli Angelopoulou
  • Joachim Hornegger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8142)

Abstract

Proper cloud segmentation can serve as an important precursor to predicting the output of solar power plants. However, due to the high variability of cloud appearance, and the high dynamic range between different sky regions, cloud segmentation is a surprisingly difficult task.

In this paper, we present an approach to cloud segmentation and classification that is based on representation learning. Texture primitives of cloud regions are represented within a restricted Boltzmann Machine. Quantitative results are encouraging. Experimental results yield a relative improvement of the unweighted average (pixelwise) precision on a three-class problem by 11% to 94% in comparison to prior work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bengio, Y., Courville, A., Vincent, P.: Representation Learning: A Review and New Perspectives. ArXiv e-prints, arXiv:1206.5538 (June 2012)Google Scholar
  2. 2.
    Bernecker, D., Riess, C., Angelopoulou, E., Hornegger, J.: Towards Improving Solar Irradiance Forecasts with Methods from Computer Vision. In: Computer Vision in Applications Workshop (2012)Google Scholar
  3. 3.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Chow, C.W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., Washom, B.: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar Energy 85(11), 2881–2893 (2011)CrossRefGoogle Scholar
  5. 5.
    Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Optical Society of America, Journal, A: Optics and Image Science 2(7), 1160–1169 (1985)CrossRefGoogle Scholar
  6. 6.
    Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 1554, 1527–1554 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hinton, G.: A Practical Guide to Training Restricted Boltzmann Machines. Tech. rep., UTML TR 2010–003 (2010)Google Scholar
  8. 8.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  9. 9.
    Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recognition 37(8), 1629–1640 (2004)Google Scholar
  10. 10.
    Marquez, R., Coimbra, C.F.: Intra-hour DNI forecasting based on cloud tracking image analysis. Solar Energy 91, 327–336 (2013)CrossRefGoogle Scholar
  11. 11.
    Richards, K., Sullivan, G.: Estimation of cloud cover using colour and texture. In: British Machine Vision Conference (1992)Google Scholar
  12. 12.
    Shields, J.E., Karr, M.E., Burden, A.R., Johnson, R.W., Mikuls, V.W., Streeter, J.R., Hodgkiss, W.S.: Research toward Multi-Site Characterization of Sky Obscuration by Clouds, Final Report for Grant N00244-07-1-009, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego. Tech. rep., Technical Note 274, DTIS (Stinet) File ADA126296 (2009)Google Scholar
  13. 13.
    Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 194–281. MIT Press, Cambridge (1986)Google Scholar
  14. 14.
    Vinciarelli, A., Burkhardt, F., Son, R.V., Weninger, F., Eyben, F., Bocklet, T., Mohammadi, G., Weiss, B., Telekom, D., Laboratories, A.G.: The INTERSPEECH 2012 Speaker Trait Challenge. In: Proc. Interspeech (2012)Google Scholar
  15. 15.
    Welling, M., Rosen-Zvi, M., Hinton, G.: Exponential family harmoniums with an application to information retrieval. Advances in Neural Information Processing Systems 17, 1481–1488 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Bernecker
    • 1
  • Christian Riess
    • 1
  • Vincent Christlein
    • 1
  • Elli Angelopoulou
    • 1
  • Joachim Hornegger
    • 1
  1. 1.Pattern Recognition Lab, Department of Computer ScienceFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations