Advertisement

A Low-Rank Constraint for Parallel Stereo Cameras

  • Christian Cordes
  • Hanno Ackermann
  • Bodo Rosenhahn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8142)

Abstract

Stereo-camera systems enjoy wide popularity since they provide more restrictive constraints for 3d-reconstruction. Given an image sequence taken by parallel stereo cameras, a low-rank constraint is derived on the measurement data. Correspondences between left and right images are not necessary yet reduce the number of optimization parameters. Conversely, traditional algorithms for stereo factorization require all feature points in both images to be matched, otherwise left and right image streams need be factorized independently. The performance of the proposed algorithm will be evaluated on synthetic data as well as two real image applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angst, R., Pollefeys, M.: Static multi-camera factorization using rigid motion. In: International Conference on Computer Vision (ICCV), pp. 1203–1210 (2009)Google Scholar
  2. 2.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3d shape from image streams. In: IEEE Computer Vision and Pattern Recognition (CVPR), Hilton Head, SC, USA, pp. 690–696 (2000)Google Scholar
  3. 3.
    Bue, A.D., de Agapito, L.: Non-rigid stereo factorization. International Journal of Computer Vision (IJCV) 66(2), 193–207 (2006)CrossRefGoogle Scholar
  4. 4.
    Costeira, J.P., Kanade, T.: A multibody factorization method for independently moving objects. International Journal of Computer Vision (IJCV) 29(3), 159–179 (1998)CrossRefGoogle Scholar
  5. 5.
    Heyden, A., Berthilsson, R., Sparr, G.: An iterative factorization method for projective structure and motion from image sequences. Image Vision Comput. 17(13), 981–991 (1999)CrossRefGoogle Scholar
  6. 6.
    Irani, M.: Multi-frame optical flow estimation using subspace constraints. In: International Conference on Computer Vision (ICCV), pp. 626–633 (1999)Google Scholar
  7. 7.
    Kanatani, K.: Motion segmentation by subspace separation: Model selection and reliability evaluation. International Journal of Image and Graphics 2(2), 179–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Kanatani, K., Sugaya, Y.: Factorization without factorization: complete recipe. Tech. Rep. 1&2, Okayama University, Japan (March 2004)Google Scholar
  9. 9.
    Kanatani, K., Sugaya, Y., Ackermann, H.: Uncalibrated factorization using a variable symmetric affine camera. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 147–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Ruhe, A., Wedin, P.: Algorithms for separable nonlinear least squares problems. Society for Industrial and Applied Mathematics Review 22(3), 318–337 (1980)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. International Journal on Computer Vision (IJCV) 9(2), 137–154 (1992)CrossRefGoogle Scholar
  12. 12.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, p. 298. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Wold, H.: Estimation of principal components and related models by iterative least squares. In: Krishnaiah (ed.) Multivariate Analysis, pp. 391–420 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Cordes
    • 1
  • Hanno Ackermann
    • 1
  • Bodo Rosenhahn
    • 1
  1. 1.Leibniz University HannoverGermany

Personalised recommendations