Advertisement

Postoperative Wundinfektionen: Epidemiologie und Prävention

  • Stephan Harbarth
Chapter
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Infektionen gehören zu den häufigsten Komplikationen nach chirurgischen Eingriffen. Vor mehr als 70 Jahren schrieb ein Beobachter: „Es gab Zeiten im Krankenhaus, da sind alle chirurgischen Patienten verstorben. Eine Operation kam einer Exekution gleich.“ Die Zeiten haben sich geändert, chirurgische Wundinfektionen nach Routineeingriffen lassen sich heutzutage in der großen Mehrzahl vermeiden, dank Asepsis, anderen Präventivmaßnahmen und Fortschritten in der chirurgischen Technik. Im Folgenden werden die Grundsätze der Pathogenese und Epidemiologie von postoperativen Wundinfektionen entsprechend dem aktuellen Stand des Wissens präsentiert.

Literatur

  1. Adler AL, Smith J, Permut LC, McMullan DM, Zerr DM (2014) Significance of positive mediastinal cultures in pediatric cardiovascular surgical procedure patients undergoing delayed sternal closure. Ann Thorac Surg. 2014 Aug;98(2):685–90PubMedCrossRefGoogle Scholar
  2. Allpress AL, Rosenthal GL, Goodrich KM, Lupinetti FM, Zerr DM (2004) Risk factors for surgical site infections after pediatric cardiovascular surgery. Pediatr Infect Dis J 23(3):231–234PubMedCrossRefGoogle Scholar
  3. Anderson DJ, Podgorny K, Berrios-Torres SI, Bratzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL, Kaye KS (2014) Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35(6):605–627PubMedPubMedCentralCrossRefGoogle Scholar
  4. Astagneau P, Desplaces N, Vincent V, Chicheportiche V, Botherel A, Maugat S, Lebascle K, Leonard P, Desenclos J, Grosset J, Ziza J, Brucker G (2001a) Mycobacterium xenopi spinal infections after discovertebral surgery: investigation and screening of a large outbreak. Lancet 358(9283):747–751PubMedCrossRefGoogle Scholar
  5. Astagneau P, Rioux C, Golliot F, Brucker G (2001b) Morbidity and mortality associated with surgical site infections: results from the 1997-1999 INCISO surveillance. J Hosp Infect 48(4):267–274CrossRefPubMedGoogle Scholar
  6. Astagneau P, L'Heriteau F, Daniel F, Parneix P, Venier AG, Malavaud S, Jarno P, Lejeune B, Savey A, Metzger MH, Bernet C, Fabry J, Rabaud C, Tronel H, Thiolet JM, Coignard B (2009) Reducing surgical site infection incidence through a network: results from the French ISO-RAISIN surveillance system. J Hosp Infect 72(2):127–134PubMedCrossRefGoogle Scholar
  7. Avato JL, Lai KK (2002) Impact of postdischarge surveillance on surgical-site infection rates for coronary artery bypass procedures. Infect Control Hosp Epidemiol 23(7):364–367PubMedCrossRefGoogle Scholar
  8. Balkhy HH, Zingg W (2014) Update on infection control challenges in special pediatric populations. Curr Opin Infect Dis. 2014 Aug. 27(4):370–8PubMedCrossRefGoogle Scholar
  9. Bennett-Guerrero E, Ferguson TB Jr, Lin M, Garg J, Mark DB, Scavo VA Jr, Kouchoukos N, Richardson JB Jr, Pridgen RL, Corey GR (2010) Effect of an implantable gentamicin-collagen sponge on sternal wound infections following cardiac surgery: a randomized trial. JAMA 304(7):755–762PubMedCrossRefGoogle Scholar
  10. Berrios-Torres SI, Mu Y, Edwards JR, Horan TC, Fridkin SK (2012) Improved risk adjustment in public reporting: coronary artery bypass graft surgical site infections. Infect Control Hosp Epidemiol 33(5):463–469PubMedCrossRefGoogle Scholar
  11. Brandt C, Hansen S, Sohr D, Daschner F, Ruden H, Gastmeier P (2004) Finding a method for optimizing risk adjustment when comparing surgical-site infection rates. Infect Control Hosp Epidemiol 25(4):313–318PubMedCrossRefGoogle Scholar
  12. Brandt C, Sohr D, Behnke M, Daschner F, Ruden H, Gastmeier P (2006) Reduction of surgical site infection rates associated with active surveillance. Infect Control Hosp Epidemiol 27(12):1347–1351PubMedCrossRefGoogle Scholar
  13. Brummer S, Brandt C, Sohr D, Gastmeier P (2008) Does stratifying surgical site infection rates by the National Nosocomial Infection Surveillance risk index influence the rank order of the hospitals in a surveillance system? J Hosp Infect 69(3):295–300PubMedCrossRefGoogle Scholar
  14. Bruny JL, Hall BL, Barnhart DC, Billmire DF, Dias MS, Dillon PW, Fisher C, Heiss KF, Hennrikus WL, Ko CY, Moss L, Oldham KT, Richards KE, Shah R, Vinocur CD, Ziegler MM (2013) American College of surgeons national surgical quality improvement program pediatric: a beta phase report. J Pediatr Surg 48(1):74–80PubMedCrossRefGoogle Scholar
  15. Campos ML, Cipriano ZM, Freitas PF (2001) Suitability of the NNIS index for estimating surgical-site infection risk at a small university hospital in Brazil. Infect Control Hosp Epidemiol 22(5):268–272PubMedCrossRefGoogle Scholar
  16. Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP (1992) The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 326:281–286PubMedCrossRefGoogle Scholar
  17. Cranny G, Elliott R, Weatherly H, Chambers D, Hawkins N, Myers L, Sculpher M, Eastwood A (2008) A systematic review and economic model of switching from non-glycopeptide to glycopeptide antibiotic prophylaxis for surgery. Health Technol Assess 12(1):iii–iv, xi-xii, 1–147PubMedCrossRefGoogle Scholar
  18. Culver DH, Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, Banerjee SN, Edwards JR, Tolson JS, Henderson TS (1991) Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am J Med 91:152S–157SPubMedCrossRefGoogle Scholar
  19. Danzmann L, Gastmeier P, Schwab F, Vonberg RP (2013) Health care workers causing large nosocomial outbreaks: a systematic review. BMC Infect Dis 13:98PubMedPubMedCentralCrossRefGoogle Scholar
  20. De Angelis G, Murthy A, Beyersmann J, Harbarth S (2010) Estimating the impact of healthcare-associated infections on length of stay and costs. Clin Microbiol Infect 16(12):1729–1735PubMedCrossRefGoogle Scholar
  21. De Angelis G, Allignol A, Murthy A, Wolkewitz M, Beyersmann J, Safran E, Schrenzel J, Pittet D, Harbarth S (2011) Multistate modelling to estimate the excess length of stay associated with meticillin-resistant Staphylococcus aureus colonisation and infection in surgical patients. J Hosp Infect 78(2):86–91PubMedCrossRefGoogle Scholar
  22. Defez C, Fabbro-Peray P, Cazaban M, Boudemaghe T, Sotto A, Daures JP (2008) Additional direct medical costs of nosocomial infections: an estimation from a cohort of patients in a French university hospital. J Hosp Infect 68(2):130–136PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eappen S, Lane BH, Rosenberg B, Lipsitz SA, Sadoff D, Matheson D, Berry WR, Lester M, Gawande AA (2013) Relationship between occurrence of surgical complications and hospital finances. JAMA 309(15):1599–1606PubMedCrossRefGoogle Scholar
  24. Eber MR, Laxminarayan R, Perencevich EN, Malani A (2010) Clinical and economic outcomes attributable to health care-associated sepsis and pneumonia. Arch Intern Med 170(4):347–353PubMedCrossRefGoogle Scholar
  25. Elek SD, Conen PE (1957) The virulence of Staphylococcus pyogenes for man. A study of the problem of wound infection. Br J Exp Pathol 38:573–586PubMedPubMedCentralGoogle Scholar
  26. Emori TG, Gaynes RP (1993) An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 6:428–442PubMedPubMedCentralCrossRefGoogle Scholar
  27. Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, Briggs JP, Sexton DJ, Kaye KS (2003) Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 36(5):592–598PubMedCrossRefGoogle Scholar
  28. Fanning C, Johnston BL, MacDonald S, LeFort-Jost S, Dockerty E (1995) Postdischarge surgical site infection surveillance. Can J Infect Control 10(3):75–79PubMedGoogle Scholar
  29. Frei E, Hodgkiss-Harlow K, Rossi PJ, Edmiston CE Jr, Bandyk DF (2011) Microbial pathogenesis of bacterial biofilms: a causative factor of vascular surgical site infection. Vasc Endovascular Surg 45(8):688–696PubMedCrossRefGoogle Scholar
  30. Furuya EY, Paez A, Srinivasan A, Cooksey R, Augenbraun M, Baron M, Brudney K, Della-Latta P, Estivariz C, Fischer S, Flood M, Kellner P, Roman C, Yakrus M, Weiss D, Granowitz EV (2008) Outbreak of Mycobacterium abscessus wound infections among „lipotourists“ from the United States who underwent abdominoplasty in the Dominican Republic. Clin Infect Dis 46(8):1181–1188PubMedCrossRefGoogle Scholar
  31. Gastmeier P, Geffers C, Ruden H, Daschner FD, Hansis ML, Kalbe P, Schweins M, Mielke M, Nassauer A (2003) Erläuterungen zu den Empfehlungen der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance von postoperativen Wundinfektionen in Einrichtungen für das ambulante Operieren. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 46:765–769CrossRefGoogle Scholar
  32. Gastmeier P, Brandt C, Sohr D, Babikir R, Mlageni D, Daschner F, Ruden H (2004) Surgical site infections in hospitals and outpatient settings. Results of the German nosocomial infection surveillance system (KISS). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 47(4):339–344CrossRefGoogle Scholar
  33. Gastmeier P, Schwab F, Behnke M, Geffers C (2012) Decreasing healthcare-associated infections (HAI) is an efficient method to decrease healthcare-associated Methicillin-resistant S.aureus (MRSA) infections Antimicrobial resistance data from the German national nosocomial surveillance system KISS. Antimicrob Resist Infect Control 1(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gaynes RP, Culver DH, Horan TC, Edwards JR, Richards C, Tolson JS (2001) Surgical site infection (SSI) rates in the United States, 1992-1998: the National Nosocomial Infections Surveillance System basic SSI risk index. Clin Infect Dis 33(Suppl 2):S69–S77PubMedCrossRefGoogle Scholar
  35. Gervaz P, Bandiera-Clerc C, Buchs NC, Eisenring MC, Troillet N, Perneger T, Harbarth S (2012) Scoring system to predict the risk of surgical-site infection after colorectal resection. Br J Surg 99(4):589–595PubMedCrossRefGoogle Scholar
  36. Geubbels EL, Mintjes-de Groot AJ, van den Berg JM, de Boer AS (2000) An operating surveillance system of surgical-site infections in The Netherlands: results of the PREZIES national surveillance network. Preventie van Ziekenhuisinfecties door Surveillance. Infect Control Hosp Epidemiol 21(5):311–318PubMedCrossRefGoogle Scholar
  37. Geubbels EL, Grobbee DE, Vandenbroucke-Grauls CM, Wille JC, de Boer AS (2006) Improved risk adjustment for comparison of surgical site infection rates. Infect Control Hosp Epidemiol 27(12):1330–1339PubMedCrossRefGoogle Scholar
  38. Graf K, Ott E, Vonberg RP, Kuehn C, Haverich A, Chaberny IF (2010) Economic aspects of deep sternal wound infections. Eur J Cardiothorac Surg 37(4):893–896PubMedCrossRefGoogle Scholar
  39. Grandbastien B, Bernet C, Parneix P, Branger B, Hommel C, Lepoutre A (2004) Epidemiology of surgical site infections in France: national surveillance 1999–2002. Annual SHEA meeting, Philadelphia, SHEAGoogle Scholar
  40. Hall L, Halton K, Bailey EJ, Page K, Whitby M, Paterson DL, Graves N (2013) Post-discharge surgical site surveillance – where to from here? J Hosp Infect 84(3):268PubMedCrossRefGoogle Scholar
  41. Harbarth S, Uckay I (2004) Are there patients with peritonitis who require empiric therapy for enterococcus? Eur J Clin Microbiol Infect Dis 23(2):73–77PubMedCrossRefGoogle Scholar
  42. Harbarth S, Samore MH, Lichtenberg D, Carmeli Y (2000) Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation 101(25):2916–2921PubMedCrossRefGoogle Scholar
  43. Haustein T, Gastmeier P, Holmes A, Lucet JC, Shannon RP, Pittet D, Harbarth S (2011) Use of benchmarking and public reporting for infection control in four high-income countries. Lancet Infect Dis 11(6):471–481PubMedCrossRefGoogle Scholar
  44. Heinemann S, Symoens F, Gordts B, Jannes H, Nolard N (2004) Environmental investigations and molecular typing of Aspergillus flavus during an outbreak of postoperative infections. J Hosp Infect 57(2):149–155PubMedCrossRefGoogle Scholar
  45. Hennessey DB, Burke JP, Ni-Dhonochu T, Shields C, Winter DC, Mealy K (2010) Preoperative hypoalbuminemia is an independent risk factor for the development of surgical site infection following gastrointestinal surgery: a multi-institutional study. Ann Surg 252(2):325–329PubMedCrossRefGoogle Scholar
  46. Hollenbeak CS, Murphy DM, Koenig S, Woodward RS, Dunagan WC, Fraser VJ (2000) The clinical and economic impact of deep chest surgical site infections following coronary artery bypass graft surgery. Chest 118(2):397–402PubMedCrossRefGoogle Scholar
  47. Holtz TH, Wenzel R (1992) Postdischarge surveillance for nosocomial wound infection: a brief review and commentary. Am J Infect Control 20:206–213PubMedCrossRefGoogle Scholar
  48. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG (1992) CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 13(10):606–608PubMedCrossRefGoogle Scholar
  49. Jain R, Kralovic SM, Evans ME, Ambrose M, Simbartl LA, Obrosky DS, Render ML, Freyberg RW, Jernigan JA, Muder RR, Miller LJ, Roselle GA (2011) Veterans Affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections. N Engl J Med 364(15):1419–1430PubMedCrossRefGoogle Scholar
  50. Jenks PJ, Laurent M, McQuarry S, Watkins R (2014) Clinical and economic burden of surgical site infection (SSI) and predicted financial consequences of elimination of SSI from an English hospital. J Hosp Infect 86(1):24–33PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kasatpibal N, Thongpiyapoom S, Narong MN, Suwalak N, Jamulitrat S (2005) Extra charge and extra length of postoperative stay attributable to surgical site infection in six selected operations. J Med Assoc Thai 88(8):1083–1091PubMedGoogle Scholar
  52. Kirby JP, Mazuski JE (2009) Prevention of surgical site infection. Surg Clin North Am 89(2):365–389, viiiPubMedCrossRefGoogle Scholar
  53. Knight R, Charbonneau P, Ratzer E, Zeren F, Haun W, Clark J (2001) Prophylactic antibiotics are not indicated in clean general surgery cases. Am J Surg 182(6):682–686PubMedCrossRefGoogle Scholar
  54. Kobayashi J, Kusachi S, Sawa Y, Motomura N, Imoto Y, Makuuchi H, Tanemoto K, Shimahara Y, Sumiyama Y (2015) Socioeconomic effects of surgical site infection after cardiac surgery in Japan. Surg Today. 2015 Apr;45(4):422–8PubMedCrossRefGoogle Scholar
  55. Krizek TJ, Robson MC (1975) Biology of surgical infection. Surg Clin North Am 55(6):1261–1267PubMedCrossRefGoogle Scholar
  56. Kusachi S, Kashimura N, Konishi T, Shimizu J, Kusunoki M, Oka M, Wakatsuki T, Kobayashi J, Sawa Y, Imoto H, Motomura N, Makuuchi H, Tanemoto K, Sumiyama Y (2012) Length of stay and cost for surgical site infection after abdominal and cardiac surgery in Japanese hospitals: multi-center surveillance. Surg Infect (Larchmt) 13(4):257–265CrossRefGoogle Scholar
  57. Lador A, Nasir H, Mansur N, Sharoni E, Biderman P, Leibovici L, Paul M (2012) Antibiotic prophylaxis in cardiac surgery: systematic review and meta-analysis. J Antimicrob Chemother 67(3):541–550PubMedCrossRefGoogle Scholar
  58. Lee MK, Dodson TB, Karimbux NY, Nalliah RP, Allareddy V (2013) Effect of occurrence of infection-related never events on length of stay and hospital charges in patients undergoing radical neck dissection for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 116(2):147–158PubMedCrossRefGoogle Scholar
  59. Limon E, Shaw E, Badia JM, Piriz M, Escofet R, Gudiol F, Pujol M, V. I. Program and Reipi (2014) Post-discharge surgical site infections after uncomplicated elective colorectal surgery: impact and risk factors. The experience of the VINCat Program. J Hosp Infect 86(2):127–132PubMedCrossRefGoogle Scholar
  60. Lissovoy G de, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB (2009) Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control 37(5):387–397.Google Scholar
  61. Lowry PW, Blankenship RJ, Gridley W, Troup NJ, Tompkins LS (1991) A cluster of legionella sternal-wound infections due to postoperative topical exposure to contaminated tap water. N Engl J Med 324(2):109–113PubMedCrossRefGoogle Scholar
  62. Macedo-Vinas M, De Angelis G, Rohner P, Safran E, Stewardson A, Fankhauser C, Schrenzel J, Pittet D, Harbarth S (2013) Burden of meticillin-resistant Staphylococcus aureus infections at a Swiss University hospital: excess length of stay and costs. J Hosp Infect 84(2):132–137PubMedCrossRefGoogle Scholar
  63. Mannien J, van den Hof S, Muilwijk J, van den Broek PJ, van Benthem B, Wille JC (2008) Trends in the incidence of surgical site infection in the Netherlands. Infect Control Hosp Epidemiol 29(12):1132–1138PubMedCrossRefGoogle Scholar
  64. Merle V, Germain JM, Chamouni P, Daubert H, Froment L, Michot F, Teniere P, Czernichow P (2000) Assessment of prolonged hospital stay attributable to surgical site infections using appropriateness evaluation protocol. Am J Infect Control 28(2):109–115PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mertz D, Johnstone J, Loeb M (2011) Does duration of perioperative antibiotic prophylaxis matter in cardiac surgery? A systematic review and meta-analysis. Ann Surg 254(1):48–54PubMedCrossRefGoogle Scholar
  66. Monge Jodra V, de Los Terreros Soler LS, Perez CD-A, Requejo CMS, Farras NP (2006) Excess length of stay attributable to surgical site infection following hip replacement: a nested case-control study. Infect Control Hosp Epidemiol 27(12):1299–1303PubMedCrossRefGoogle Scholar
  67. Morikane K, Honda H, Yamagishi T, Suzuki S, Aminaka M (2014) Factors associated with surgical site infection in colorectal surgery: the Japan nosocomial infections surveillance. Infect Control Hosp Epidemiol 35(6):660–666PubMedCrossRefGoogle Scholar
  68. Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK (2011) Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. Infect Control Hosp Epidemiol 32(10):970–986PubMedCrossRefGoogle Scholar
  69. Nthumba PM, Stepita-Poenaru E, Poenaru D, Bird P, Allegranzi B, Pittet D, Harbarth S (2010) Cluster-randomized, crossover trial of the efficacy of plain soap and water versus alcohol-based rub for surgical hand preparation in a rural hospital in Kenya. Br J Surg 97(11):1621–1628PubMedCrossRefGoogle Scholar
  70. Oliveira AC de, Ciosak SI, Ferraz EM, Grinbaum RS (2006) Surgical site infection in patients submitted to digestive surgery: risk prediction and the NNIS risk index. Am J Infect Control 34(4):201–207.Google Scholar
  71. Olson MM, Lee JTJ (1990) Continuous, 10-year wound infection surveillance. Results, advantages, and unanswered questions. Arch Surg 125:794–803PubMedCrossRefGoogle Scholar
  72. Padoveze MC, Fortaleza CM, Freire MP, Brandao de Assis D, Madalosso G, Pellini AC, Cesar ML, Pisani Neto V, Beltramelli MM, Chimara E, Ferrazoli L, da Silva Telles MA, Sampaio JL, Leao SC (2007) Outbreak of surgical infection caused by non-tuberculous mycobacteria in breast implants in Brazil. J Hosp Infect 67(2):161–167PubMedCrossRefGoogle Scholar
  73. Parry MF, Grant B, Yukna M, Adler-Klein D, McLeod GX, Taddonio R, Rosenstein C (2001) Candida osteomyelitis and diskitis after spinal surgery: an outbreak that implicates artificial nail use. Clin Infect Dis 32(3):352–357PubMedCrossRefGoogle Scholar
  74. Perencevich EN, Sands KE, Cosgrove SE, Guadagnoli E, Meara E, Platt R (2003) Health and economic impact of surgical site infections diagnosed after hospital discharge. Emerg Infect Dis 9(2):196–203PubMedPubMedCentralCrossRefGoogle Scholar
  75. Petignat C, Francioli P, Harbarth S, Regli L, Porchet F, Reverdin A, Rilliet B, de Tribolet N, Pannatier A, Pittet D, Zanetti G (2008) Cefuroxime prophylaxis is effective in noninstrumented spine surgery: a double-blind, placebo-controlled study. Spine 33(18):1919–1924PubMedCrossRefGoogle Scholar
  76. Platt R, Zucker JR, Zaleznik DF, Hopkins CC, Dellinger EP, Karchmer AW, Bryan CS, Burke JF, Wikler MA, Marino SK et al (1992) Prophylaxis against wound infection following herniorrhaphy or breast surgery. J Infect Dis 166(3):556–560PubMedCrossRefGoogle Scholar
  77. Pollock EM, Ford-Jones EL, Rebeyka I, Mindorff CM, Bohn DJ, Edmonds JF, Lightfoot NE, Coles J, Williams WG, Trusler GA (1990) Early nosocomial infections in pediatric cardiovascular surgery patients. Crit Care Med 18:378–384PubMedCrossRefGoogle Scholar
  78. Poulsen KB, Jepsen OB (1995) Failure to detect a general reduction of surgical wound infections in Danish hospitals. Dan Med Bull 42(5):485–488PubMedGoogle Scholar
  79. Regimbeau JM, Fuks D, Pautrat K, Mauvais F, Haccart V, Msika S, Mathonnet M, Scotte M, Paquet JC, Vons C, Sielezneff I, Millat B, Chiche L, Dupont H, Duhaut P, Cosse C, Diouf M, Pocard M, F. S. Group (2014) Effect of postoperative antibiotic administration on postoperative infection following cholecystectomy for acute calculous cholecystitis: a randomized clinical trial. JAMA 312(2):145–154PubMedCrossRefGoogle Scholar
  80. Reilly J, Noone A, Clift A, Cochrane L, Johnston L, Rowley DI, Phillips G, Sullivan F (2005) A study of telephone screening and direct observation of surgical wound infections after discharge from hospital. J Bone Joint Surg Br 87(7):997–999PubMedCrossRefGoogle Scholar
  81. Romy S, Eisenring MC, Bettschart V, Petignat C, Francioli P, Troillet N (2008) Laparoscope use and surgical site infections in digestive surgery. Ann Surg 247(4):627–632PubMedCrossRefGoogle Scholar
  82. Roy MC, Herwaldt LA, Embrey R, Kuhns K, Wenzel RP, Perl TM (2000) Does the Centers for Disease Control‘s NNIS system risk index stratify patients undergoing cardiothoracic operations by their risk of surgical-site infection? Infect Control Hosp Epidemiol 21(3):186–190PubMedCrossRefGoogle Scholar
  83. Roy S, Patkar A, Daskiran M, Levine R, Hinoul P, Nigam S (2014) Clinical and economic burden of surgical site infection in hysterectomy. Surg Infect (Larchmt) 15(3):266–273CrossRefGoogle Scholar
  84. Ruef C (2004) Requirements for infection control during surgery. Ther Umsch 61(3):211–215PubMedCrossRefGoogle Scholar
  85. Russo PL, Spelman DW (2002) A new surgical-site infection risk index using risk factors identified by multivariate analysis for patients undergoing coronary artery bypass graft surgery. Infect Control Hosp Epidemiol 23(7):372–376PubMedCrossRefGoogle Scholar
  86. Ryan SL, Sen A, Staggers K, Luerssen TG, Jea A, G. for the Texas Children‘s Hospital Spine Study (2014) A standardized protocol to reduce pediatric spine surgery infection: a quality improvement initiative. J Neurosurg Pediatr 2014 Sep;14(3):259–65Google Scholar
  87. Saito JM, Chen LE, Hall BL, Kraemer K, Barnhart DC, Byrd C, Cohen ME, Fei C, Heiss KF, Huffman K, Ko CY, Latus M, Meara JG, Oldham KT, Raval MV, Richards KE, Shah RK, Sutton LC, Vinocur CD, Moss RL (2013) Risk-adjusted hospital outcomes for children‘s surgery. Pediatrics 132(3):e677–e688PubMedCrossRefGoogle Scholar
  88. Sands K, Vineyard G, Platt R (1996) Surgical site infections occuring after hospital discharge. J Infect Dis 173:963–970PubMedCrossRefGoogle Scholar
  89. Sands K, Vineyard G, Livingston J, Christiansen C, Platt R (1999) Efficient identification of postdischarge surgical site infections: use of automated pharmacy dispensing information, administrative data, and medical record information. J Infect Dis 179(2):434–441PubMedCrossRefGoogle Scholar
  90. Schaefer MK, Jhung M, Dahl M, Schillie S, Simpson C, Llata E, Link-Gelles R, Sinkowitz-Cochran R, Patel P, Bolyard E, Sehulster L, Srinivasan A, Perz JF (2010) Infection control assessment of ambulatory surgical centers. JAMA 303(22):2273–2279PubMedCrossRefGoogle Scholar
  91. Schnabel D, Gaines J, Nguyen DB, Esposito DH, Ridpath A, Yacisin K, Poy JA, Mullins J, Burns R, Lijewski V, McElroy NP, Ahmad N, Harrison C, Parinelli EJ, Beaudoin AL, Posivak-Khouly L, Pritchard S, Jensen BJ, Toney NC, Moulton-Meissner HA, Nyangoma EN, Barry AM, Feldman KA, Blythe D, Perz JF, Morgan OW, Kozarsky P, Brunette GW, Sotir M, Centers for Disease Control and Prevention (2014) Notes from the field: rapidly growing nontuberculous Mycobacterium wound infections among medical tourists undergoing cosmetic surgeries in the Dominican Republic--multiple states, March 2013-February 2014. MMWR Morb Mortal Wkly Rep 63(9):201–202PubMedPubMedCentralGoogle Scholar
  92. Schreiber PW, Kuster SP, Hasse B, Bayard C, Ruegg C, Kohler P, Keller PM, Bloemberg GV, Maisano F, Bettex D, Halbe M, Sommerstein R, Sax H (2016) Reemergence of mycobacterium chimaera in heater-cooler units despite intensified cleaning and disinfection protocol. Emerg Infect Dis 22(10):1830–1833PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schulgen G, Kropec A, Kappstein I, Daschner F, Schumacher M (2000) Estimation of extra hospital stay attributable to nosocomial infections: heterogeneity and timing of events. J Clin Epidemiol 53(4):409–417PubMedCrossRefGoogle Scholar
  94. Schuster JM, Rechtine G, Norvell DC, Dettori JR (2010) The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine (Phila Pa 1976) 35(9 Suppl):S125–S137CrossRefGoogle Scholar
  95. Segal I, Kang C, Albersheim SG, Skarsgard ED, Lavoie PM (2014) Surgical site infections in infants admitted to the neonatal intensive care unit. J Pediatr Surg 49(3):381–384PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sharp NE, Knott EM, Iqbal CW, Thomas P, Peter SDS (2013) Accuracy of American College of surgeons national surgical quality improvement program pediatric for laparoscopic appendectomy at a single institution. J Surg Res 184(1):318–321PubMedCrossRefGoogle Scholar
  97. Sommerstein R, Ruegg C, Kohler P, Bloemberg G, Kuster SP, Sax H (2016) Transmission of mycobacterium chimaera from heater-cooler units during cardiac surgery despite an ultraclean air ventilation system. Emerg Infect Dis 22(6):1008–1013PubMedPubMedCentralCrossRefGoogle Scholar
  98. Staszewicz W, Eisenring MC, Bettschart V, Harbarth S, Troillet N (2014) Thirteen years of surgical site infection surveillance in Swiss hospitals. J Hosp Infect 88(1):40–47PubMedCrossRefGoogle Scholar
  99. Taylor EW, Duffy K, Lee K, Noone A, Leanord A, King PM, O'Dwyer P (2003) Telephone call contact for post-discharge surveillance of surgical site infections. A pilot, methodological study. J Hosp Infect 55(1):8–13PubMedCrossRefGoogle Scholar
  100. Troillet N, Widmer A (2014) Epidemiologische Überwachung und Prävention von postoperativen Infektionen. SwissNoso 19(1):1–4Google Scholar
  101. Uckay I, Lubbeke A, Emonet S, Tovmirzaeva L, Stern R, Ferry T, Assal M, Bernard L, Lew D, Hoffmeyer P (2009a) Low incidence of haematogenous seeding to total hip and knee prostheses in patients with remote infections. J Infect 59(5):337–345PubMedCrossRefGoogle Scholar
  102. Uckay I, Pittet D, Vaudaux P, Sax H, Lew D, Waldvogel F (2009b) Foreign body infections due to Staphylococcus epidermidis. Ann Med 41(2):109–119PubMedCrossRefGoogle Scholar
  103. Uckay I, Hoffmeyer P, Lew D, Pittet D (2013) Prevention of surgical site infections in orthopaedic surgery and bone trauma: state-of-the-art update. J Hosp Infect 84(1):5–12PubMedCrossRefGoogle Scholar
  104. Vogel TR, Dombrovskiy VY, Carson JL, Haser PB, Lowry SF, Graham AM (2010) Infectious complications after elective vascular surgical procedures. J Vasc Surg 51(1):122–129, discussion 129–130PubMedCrossRefGoogle Scholar
  105. Weber WP, Marti WR, Zwahlen M, Misteli H, Rosenthal R, Reck S, Fueglistaler P, Bolli M, Trampuz A, Oertli D, Widmer AF (2008a) The timing of surgical antimicrobial prophylaxis. Ann Surg 247(6):918–926PubMedCrossRefGoogle Scholar
  106. Weber WP, Zwahlen M, Reck S, Feder-Mengus C, Misteli H, Rosenthal R, Brandenberger D, Oertli D, Widmer AF, Marti WR (2008b) Economic burden of surgical site infections at a European university hospital. Infect Control Hosp Epidemiol 29(7):623–629PubMedCrossRefGoogle Scholar
  107. Weiss CA 3rd, Statz CL, Dahms RA, Remucal MJ, Dunn DL, Beilman GJ (1999) Six years of surgical wound infection surveillance at a tertiary care center: review of the microbiologic and epidemiological aspects of 20,007 wounds. Arch Surg 134(10):1041–1048PubMedCrossRefGoogle Scholar
  108. White A, Hambraeus A, Laurell G, Hoborn J (1992) The relative importance of the routes and sources of wound contamination during general surgery. II. Airborne. J Hosp Infect 22:41–54CrossRefGoogle Scholar
  109. Whitehouse JD, Friedman ND, Kirkland KB, Richardson WJ, Sexton DJ (2002) The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol 23(4):183–189PubMedCrossRefGoogle Scholar
  110. Wilson AP, Helder N, Theminimulle SK, Scott GM (1998) Comparison of wound scoring methods for use in audit. J Hosp Infect 39(2):119–126PubMedCrossRefGoogle Scholar
  111. Wilson J, Guy R, Elgohari S, Sheridan E, Davies J, Lamagni T, Pearson A (2011) Trends in sources of meticillin-resistant Staphylococcus aureus (MRSA) bacteraemia: data from the national mandatory surveillance of MRSA bacteraemia in England, 2006-2009. J Hosp Infect 79(3):211–217PubMedCrossRefGoogle Scholar
  112. Wright SN, Gerry JS, Busowski MT, Klochko AY, McNulty SG, Brown SA, Sieger BE, Ken Michaels P, Wallace MR (2012) Gordonia bronchialis sternal wound infection in 3 patients following open heart surgery: intraoperative transmission from a healthcare worker. Infect Control Hosp Epidemiol 33(12):1238–1241PubMedCrossRefGoogle Scholar
  113. Zanetti G, Giardina R, Platt R (2001a) Intraoperative redosing of cefazolin and risk for surgical site infection in cardiac surgery. Emerg Infect Dis 7(5):828–831PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zanetti G, Goldie SJ, Platt R (2001b) Clinical consequences and cost of limiting use of vancomycin for perioperative prophylaxis: example of coronary artery bypass surgery. Emerg Infect Dis 7(5):820–827PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhan C, Miller MR (2003) Excess length of stay, charges, and mortality attributable to medical injuries during hospitalization. JAMA 290(14):1868–1874PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Infection Control Program, Geneva University Hospitals and Faculty of MedicineGeneva 14Schweiz

Section editors and affiliations

  • Markus Dettenkofer
    • 1
  • Martin Scherrer
    • 2
  1. 1.Institut für Krankenhaushygiene & InfektionspräventionHegau-Bodensee-KlinikumRadolfzellDeutschland
  2. 2.Universitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations