Computer Karate Trainer in Tasks of Personal and Homeland Security Defense

  • Tomasz Hachaj
  • Marek R. Ogiela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8128)


In this paper will be presented a new possibility of using GDL (Gesture Description Language) approach for recognition of basic combat techniques from martial arts. The GDL approach allows not only to analyze the several Shorin-Ryu Karate techniques but also to support the training and teaching activities of such arts. Moreover the GDL allow performing the human behavioral analysis, which may be important for recognition of dangerous situations while ensuring the homeland security.


GDL gesture description language semantic classifier gestures recognition karate self-defense 


  1. 1.
    Vinayak, S., Murugappan, H.R., Liu, K., Vinayak, Murugappan, S., Liu, H.R., Ramani, K.: Shape-It-Up: Hand gesture based creative expression of 3D shapes using intelligent generalized cylinders. Computer-Aided Design 45, 277–287 (2013)CrossRefGoogle Scholar
  2. 2.
    Elakkiya, R., Selvamai, K., Velumadhava Rao, R., Kannan, A.: Fuzzy Hand Gesture Recognition Based Human Computer Interface Intelligent System. UACEE International Journal of Advances in Computer Networks and its Security 2(1), 29–33Google Scholar
  3. 3.
    Augsburg University (2011), Full Body Interaction Framework:
  4. 4.
    Arulkarthick, V.J., Sangeetha, D., Umamaheswari, S.: Sign Language Recognition using K-Means Clustered Haar-Like Features and a Stochastic Context Free Grammar. European Journal of Scientific Research 78(1), 74–84 (2012) ISSN 1450-216XGoogle Scholar
  5. 5.
    Yeasin, M., Chaudhuri, S.: Visual understanding of dynamic hand gestures. Pattern Recognition 33, 1805–1817 (2000)CrossRefGoogle Scholar
  6. 6.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR, vol. 3 (2011)Google Scholar
  7. 7.
    Bianco, S., Tisato, F.: Karate moves recognition from skeletal motion. In: Proc. SPIE 8650, Three-Dimensional Image Processing (3DIP) and Applications 2013, 86500K (March 12, 2013), doi:10.1117/12.2006229Google Scholar
  8. 8.
    Miranda, L., Vieira, T., Martinez, D., Lewiner, T., Vieira, A.W., Campos, M.F.M.: Real-time gesture recognition from depth data through key poses learning and decision forests. In: Proceedings of XXV SIBGRAPI Conference on Graphics, Patterns and Images (2012)Google Scholar
  9. 9.
    Mirabella, O., Raucea, A., Fisichella, F., Gentile, L.: A motion capture system for sport training and rehabilitation. In: 2011 4th International Conference on Human System Interactions (HSI), pp. 52–59 (2011), doi:10.1109/HSI.2011.5937342Google Scholar
  10. 10.
    List of games that utilize Kinect sensor,
  11. 11.
    Hachaj, T., Ogiela, M.R.: Semantic Description and Recognition of Human Body Poses and Movement Sequences with Gesture Description Language. In: Kim, T.-h., Kang, J.-J., Grosky, W.I., Arslan, T., Pissinou, N. (eds.) MulGraB, BSBT and IUrC 2012. CCIS, vol. 353, pp. 1–8. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Ogiela, M.R., Piekarczyk, M.: Random graph languages for distorted and ambiguous patterns: single layer model. In: Proceedings of the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2012), Palermo, Italy, July 4-6, pp. 108–113 (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Tomasz Hachaj
    • 1
  • Marek R. Ogiela
    • 2
  1. 1.Pedagogical University of KrakowKrakowPoland
  2. 2.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations