Advertisement

Solving the Discrete Logarithm Problem for Packing Candidate Preferences

  • James Heather
  • Chris Culnane
  • Steve Schneider
  • Sriramkrishnan Srinivasan
  • Zhe Xia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8128)

Abstract

Ranked elections are used in many places across the world, and a number of end-to-end verifiable voting systems have been proposed to handle these elections recently. One example is the vVote system designed for the Victorian State Election, Australia. In this system, many voters will give a full ranking of up to 38 candidates. The easiest way to do this is to ask each voter to reorder ciphertexts representing the different candidates, so that the ciphertext ordering represents the candidate ranking. But this requires sending 38 ciphertexts per voter through the mixnets, which will take a long time. In this paper, we explore how to “pack” multiple candidate preferences into a single ciphertext, so that these preferences can be represented in the least number of ciphertexts possible, while maintaining efficient decryption. Both the packing and the unpacking procedure are performed publicly: we still provide 38 ciphertexts, but they are combined appropriately before they enter the mixnets, and after decryption, a meet-in-the-middle algorithm can be used to recover the full candidate preferences despite the discrete logarithm problem.

Keywords

Lookup Table Vote System Discrete Logarithm Problem Homomorphic Encryption Candidate Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th conference on Security Symposium (SS 2008), Berkeley, CA, pp. 335–348 (2008)Google Scholar
  2. 2.
    Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate election system. In: Proceedings of the 20th ACM Symposium on Principles of Distributed Computing (PODC 2001), New York, NY, USA, pp. 274–283 (2001)Google Scholar
  3. 3.
    Benaloh, J.C.: Secret sharing homomorphisms: Keeping shares of a secret secret (Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  4. 4.
    Benaloh, J.: Towards simple verifiable elections. In: Proceedings of IAVoSS Workshop on Trustworthy Election (WOTE 2006), Cambridge, UK, pp. 61–68 (2006)Google Scholar
  5. 5.
    Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: coercion-resistant verifiable tallying for STV voting. IEEE Transactions on Information Forensics and Security 4(4), 685–698 (2009)CrossRefGoogle Scholar
  6. 6.
    Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S., Srinivasan, S., Teague, V., Wen, R., Xia, Z.: A supervised verifiable voting protocol for the Victorian Electoral Commission. In: The 5th International Conference on Electronic Voting, EVOTE 2012 (2012)Google Scholar
  7. 7.
    Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S., Srinivasan, S., Teague, V., Wen, R., Xia, Z.: Using Prêt à Voter in the Victorian State elections. In: The 2012 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT 2012 (2012)Google Scholar
  8. 8.
    Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.: Multi-authority secret-ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the nbs data encryption standard. Journal of Computer 10(6), 74–84 (1977)CrossRefGoogle Scholar
  12. 12.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on IT 31(4), 467–472 (1985)Google Scholar
  13. 13.
    Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algorithms, vol. II. Addison-Wesley (1981)Google Scholar
  16. 16.
    Merkle, R., Hellman, M.: On the security of multiple encryption. Communications of the ACM 24(7) (1981)Google Scholar
  17. 17.
    Andrew Nef, C.: A verifiable secret shuffle and its application to e-voting. In: Proceedings of the 8th ACM Conference on Computer and Communications Security (CSS 2001), pp. 116–125 (2001)Google Scholar
  18. 18.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  20. 20.
    Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à Voter: a Voter-Verifiable Voting System. IEEE Transactions on Information Forensics and Security (Special Issue on Electronic Voting) 4(4), 662–673 (2009)CrossRefGoogle Scholar
  21. 21.
    Ryan, P.Y.A., Schneider, S.A.: Prêt à voter with re-encryption mixes. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 313–326. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Teague, V., Ramchen, K., Naish, L.: Corcion-resistant tallying for STV voting. In: 2008 USENIX/ACCURATE Electronic Voting Workshop (EVT 2008), San Jose, CA, US (2008)Google Scholar
  24. 24.

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • James Heather
    • 1
  • Chris Culnane
    • 1
  • Steve Schneider
    • 1
  • Sriramkrishnan Srinivasan
    • 1
  • Zhe Xia
    • 2
  1. 1.Department of ComputingUniversity of SurreyGuildfordU.K.
  2. 2.Department of ComputingWuhan University of TechnologyChina

Personalised recommendations