Advertisement

Optimal Parameters for XMSSMT

  • Andreas Hülsing
  • Lea Rausch
  • Johannes Buchmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8128)

Abstract

We introduce Multi Tree XMSS (XMSS MT ), a hash-based signature scheme that can be used to sign a virtually unlimited number of messages. It is provably forward and hence EU-CMA secure in the standard model and improves key and signature generation times compared to previous schemes. XMSS MT has — like all practical hash-based signature schemes — a lot of parameters that control different trade-offs between security, runtimes and sizes. Using linear optimization, we show how to select provably optimal parameter sets for different use cases.

Keywords

hash-based signatures parameter selection linear optimization forward secure signatures implementation 

References

  1. 1.
    Bellare, M., Miner, S.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - A practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Buchmann, J., Coronado García, L.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Dantzig, G.B.: Linear Programming And Extensions. Princeton University Press (1963)Google Scholar
  9. 9.
    Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart cards. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    IBM. IBM ILOG CPLEX Optimizer, http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (accessed Januray 2013)
  11. 11.
    Lenstra, A.K.: Key lengths. Contribution to The Handbook of Information Security (2004)Google Scholar
  12. 12.
    Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Moritz, S.: A Mixed Integer Approach for the Transient Case of Gas Network Optimization. PhD thesis, TU Darmstadt (February 2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Andreas Hülsing
    • 1
  • Lea Rausch
    • 1
  • Johannes Buchmann
    • 1
  1. 1.Cryptography and Computeralgebra, Department of Computer ScienceTU DarmstadtGermany

Personalised recommendations