Generating Discrete Planes with Substitutions

  • Valérie Berthé
  • Jérémie Bourdon
  • Timo Jolivet
  • Anne Siegel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8079)

Abstract

Given a finite set S of unimodular Pisot substitutions, we provide a method for characterizing the infinite sequences over S that allow to generate a full discrete plane when, starting from a finite seed, we iterate the multidimensional dual substitutions associated with S. We apply our results to study the substitutions associated with the Brun multidimensional continued fraction algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8(2), 181–207 (2001)MathSciNetMATHGoogle Scholar
  2. 2.
    Avila, A., Delecroix, V.: Pisot property for the Brun and fully subtractive algorithms (preprint, 2013)Google Scholar
  3. 3.
    Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin arithmetical discrete planes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 107–118. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Berthé, V., Jolivet, T., Siegel, A.: Substitutive arnoux-rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory 7(1), 173–197 (2012)MathSciNetGoogle Scholar
  5. 5.
    Berthé, V., Jolivet, T., Siegel, A.: Connectedness of Rauzy fractals associated with Arnoux-Rauzy substitutions (preprint, 2013)Google Scholar
  6. 6.
    Berthé, V., Siegel, A.: Tilings associated with beta-numeration and substitutions. Integers 5(3), A2, 46 (2005)Google Scholar
  7. 7.
    Berthé, V., Siegel, A., Thuswaldner, J.M.: Substitutions, Rauzy fractals, and tilings. In: Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010)Google Scholar
  8. 8.
    Berthé, V., Steiner, W., Thuswaldner, J.M.: Tilings with S-adic Rauzy fractals (preprint, 2013)Google Scholar
  9. 9.
    Brun, V.: Algorithmes euclidiens pour trois et quatre nombres. In: Treizième Congrès des Mathèmaticiens Scandinaves, Tenu à Helsinki, Août 18-23, pp. 45–64 (1957)Google Scholar
  10. 10.
    Fernique, T.: Multidimensional Sturmian sequences and generalized substitutions. Internat. J. Found. Comput. Sci. 17(3), 575–599 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognition 42(10), 2229–2238 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Fogg, N.P.: Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics, vol. 1794. Springer, Berlin (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Frougny, C., Solomyak, B.: Finite beta-expansions. Ergodic Theory Dynam. Systems 12(4), 713–723 (1992)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Furukado, M., Ito, S., Yasutomi, S.I.: The condition for the generation of the stepped surfaces in terms of the modified Jacobi-Perron algorithm (preprint, 2013)Google Scholar
  15. 15.
    Ito, S., Ohtsuki, M.: Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math. 17(1), 33–58 (1994)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ito, S., Rao, H.: Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153, 129–155 (2006)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Paysant-Le Roux, R., Dubois, E.: Une application des nombres de Pisot à l’algorithme de Jacobi-Perron. Monatsh. Math. 98(2), 145–155 (1984)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2), 147–178 (1982)MathSciNetMATHGoogle Scholar
  19. 19.
    Schweiger, F.: Multidimensional continued fractions. Oxford Science Publications, Oxford University Press (2000)Google Scholar
  20. 20.
    Siegel, A., Thuswaldner, J.M.: Topological properties of Rauzy fractals. Mém. Soc. Math. Fr. (N.S.) (118), 140 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valérie Berthé
    • 1
  • Jérémie Bourdon
    • 2
  • Timo Jolivet
    • 1
    • 3
  • Anne Siegel
    • 4
  1. 1.LIAFA, CNRSUniversité Paris DiderotFrance
  2. 2.LINAUniversité de NantesFrance
  3. 3.FUNDIM, Department of MathematicsUniversity of TurkuFinland
  4. 4.INRIA, Centre Rennes-Bretagne AtlantiqueDylissRennesFrance

Personalised recommendations