On Infinite Words Determined by L Systems

  • Tim Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8079)

Abstract

A deterministic L system generates an infinite word α if each word in its derivation sequence is a prefix of the next, yielding α as a limit. We generalize this notion to arbitrary L systems via the concept of prefix languages. A prefix language is a language L such that for all x,y ∈ L, x is a prefix of y or y is a prefix of x. Every infinite prefix language determines an infinite word. Where C is a class of L systems (e.g. 0L, DT0L), we denote by ω(C) the class of infinite words determined by the prefix languages in C. This allows us to speak of infinite 0L words, infinite DT0L words, etc. We categorize the infinite words determined by a variety of L systems, showing that the whole hierarchy collapses to just three distinct classes of infinite words: ω(PD0L), ω(D0L), and ω(CD0L).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Berstel, J.: Properties of infinite words: Recent results. In: Monien, B., Cori, R. (eds.) STACS 1989. LNCS, vol. 349, pp. 36–46. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  3. 3.
    Book, R.V.: On languages with a certain prefix property. Mathematical Systems Theory 10, 229–237 (1977)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cassaigne, J., Nicolas, F.: Quelques propriétés des mots substitutifs. Bulletin of the Belgian Mathematical Society-Simon Stevin 10(5), 661–677 (2003)MathSciNetGoogle Scholar
  5. 5.
    Culik, K., Karhumäki, J.: Iterative devices generating infinite words. Int. J. Found. Comput. Sci. 5(1), 69–97 (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Culik, K., Salomaa, A.: On infinite words obtained by iterating morphisms. Theoretical Computer Science 19(1), 29–38 (1982)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Head, T.: Adherences of D0L languages. Theoretical Computer Science 31(1-2), 139–149 (1984)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Honkala, J.: The equality problem for purely substitutive words. In: Combinatorics, Automata, and Number Theory, pp. 505–529. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Kari, L., Rozenberg, G., Salomaa, A.: L systems. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 253–328. Springer-Verlag New York, Inc., New York (1997)CrossRefGoogle Scholar
  10. 10.
    Pansiot, J.J.: On various classes of infinite words obtained by iterated mappings. In: Nivat, M., Perrin, D. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 188–197. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  11. 11.
    Rozenberg, G., Salomaa, A.: Mathematical Theory of L Systems. Academic Press, Inc., Orlando (1980)MATHGoogle Scholar
  12. 12.
    Smith, T.: Infiniteness and boundedness in 0L, DT0L, and T0L systems. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 535–546. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Yamakami, T., Suzuki, T.: Resource bounded immunity and simplicity. Theoretical Computer Science 347(1-2), 90–129 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tim Smith
    • 1
  1. 1.College of Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations