# Strongly k-Abelian Repetitions

• Mari Huova
• Aleksi Saarela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8079)

## Abstract

We consider with a new point of view the notion of nth powers in connection with the k-abelian equivalence of words. For a fixed natural number k, words u and v are k-abelian equivalent if every factor of length at most k occurs in u as many times as in v. The usual abelian equivalence coincides with 1-abelian equivalence. Usually k-abelian squares are defined as words w for which there exist non-empty k-abelian equivalent words u and v such that w = uv. The new way to consider k-abelian nth powers is to say that a word is strongly k-abelian nth power if it is k-abelian equivalent to an nth power. We prove that strongly k-abelian nth powers are not avoidable on any alphabet for any numbers k and n. In the abelian case this is easy, but for k > 1 the proof is not trivial.

### Keywords

k-abelian equivalence nth powers avoidability

## Preview

### References

1. 1.
Carpi, A., De Luca, A.: Square-free words on partially commutative free monoids. Information Processing Letters 22(3), 125–131 (1986)
2. 2.
Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer, Heidelberg (1997)
3. 3.
Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory Ser. A 27(2), 181–185 (1979)
4. 4.
Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and finite automata. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Rainbow of Computer Science. LNCS, vol. 6570, pp. 90–101. Springer, Heidelberg (2011)
5. 5.
Huova, M., Karhumäki, J.: On the unavoidability of k-abelian squares in pure morphic words. Journal of Integer Sequences 16, article 13.2.9 (2013)Google Scholar
6. 6.
Huova, M.: Existence of an infinite ternary 64-abelian square-free word. Special Issue of the Journal RAIRO - Theoretical Informatics and Applications dedicated to “Journees Montoises d’Informatique Theorique 2012” (submitted)Google Scholar
7. 7.
Karhumäki, J., Saarela, A., Zamboni, L.: On a generalization of Abelian equivalence and complexity of infinite words (submitted), arXiv preprint at http://arxiv.org/abs/1301.5104
8. 8.
Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)
9. 9.
10. 10.
Mercaş, R., Saarela, A.: 3-abelian cubes are avoidable on binary alphabets. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 374–383. Springer, Heidelberg (2013)
11. 11.
Ochem, P., Rampersad, N., Shallit, J.: Avoiding approximate squares. International Journal of Foundations of Computer Science 19(3), 633–648 (2008)
12. 12.
Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7, 1–22 (1906)Google Scholar
13. 13.
Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912)Google Scholar