Advertisement

The Lexicographic Cross-Section of the Plactic Monoid Is Regular

  • Christian Choffrut
  • Robert Mercaş
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8079)

Abstract

The plactic monoid is the quotient of the free monoid by the congruence generated by Knuth’s well-celebrated rules. It is well-known that the set of Young tableaux is a cross-section of this congruence which happens to be regular. The main result of this work shows that the set of alphabetically minimal elements in the congruence classes is also regular. We give a full combinatorial characterization of these minimal elements and show that constructing them is as fast as constructing a tableau.

Keywords

Minimal Element Transitive Closure Young Tableau Congruence Class Free Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anisimov, A.V., Knuth, D.E.: Inhomogeneous sorting. International Journal of Computer and Information Sciences 8(4), 255–260 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arnold, A., Kanta, M., Krob, D.: Recognizable subsets of the two letter plactic monoid. Information Processing Letters 64, 53–59 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cartier, P., Foata, D.: Problèmes combinatoires de commutation et réarrangements. Lecture Notes in Mathematics, vol. 85 (1969)Google Scholar
  4. 4.
    Choffrut, C., Mercaş, R.: Contextual partial commutations. Discrete Mathematics and Theoretical Computer Science 12(4), 59–72 (2010)MathSciNetGoogle Scholar
  5. 5.
    Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co., Singapore (1995)CrossRefGoogle Scholar
  6. 6.
    Duboc, C.: On some equations in free partially commutative monoids. Theoretical Computer Science 46(2-3), 159–174 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press (1974)Google Scholar
  8. 8.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word processing in groups. Jones and Bartlett (1992)Google Scholar
  9. 9.
    Greene, C.: An extension of Schensted’s Theorem. Advances in Mathematics 14(2), 254–265 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Knuth, D.E.: The art of computer programming, vol. 3. Addison Wesley (1973)Google Scholar
  11. 11.
    Lallement, G.: Semigroups and Combinatorial Applications. John Wiley & Sons (1979)Google Scholar
  12. 12.
    Lascoux, A., Leclerc, B., Thibon, J.-Y.: The plactic monoid. In: Lothaire, M. (ed.) Algebraic Combinatorics on Words, pp. 144–173. Cambridge University Press (2002)Google Scholar
  13. 13.
    Lascoux, A., Schützenberger, M.-P.: Le monoïde plaxique. In: de Luca, A. (ed.) Non-commutative Structures in Algebra and Geometric Combinatorics, vol. 109, pp. 129–156. C.N.R. (1981)Google Scholar
  14. 14.
    Lentin, A., Schützenberger, M.-P.: A combinatorial problem in the theory of free monoids. In: Bose, R.C., Bowlings, T.E. (eds.) Combinatorial Mathematics, pp. 112–144. North Carolina Press, Chapel Hill (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Choffrut
    • 1
  • Robert Mercaş
    • 2
  1. 1.L.I.A.F.A.Université Paris 7Paris CedexFrance
  2. 2.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations