Symbolic System Synthesis Using Answer Set Programming

  • Benjamin Andres
  • Martin Gebser
  • Torsten Schaub
  • Christian Haubelt
  • Felix Reimann
  • Michael Glaß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)

Abstract

Recently, Boolean Satisfiability (SAT) solving has been proposed to tackle the increasing complexity in high-level system design. Working well for system specifications with a limited amount of routing options, they tend to fail for densely connected computing platforms. This paper proposes an automated system design approach employing Answer Set Programming (ASP). ASP provides a stringent semantics, allowing for an efficient representation of routing options. An automotive case-study illustrates that the proposed ASP-based system design approach is competitive for sparsely connected computing platforms, while it outperforms SAT-based approaches for dense Networks-on-Chip by an order of magnitude.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  2. 2.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)Google Scholar
  3. 3.
    Blickle, T., Teich, J., Thiele, L.: System-level synthesis using Evolutionary Algorithms. J. Design Automation for Embedded Systems 3(1), 23–58 (1998)CrossRefGoogle Scholar
  4. 4.
    Borkar, S.: Thousand core chips: a technology perspective. In: Proc. of DAC 2007, pp. 746–749 (2007)Google Scholar
  5. 5.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam answer set solving collection. AI Communications 24(2), 105–124 (2011)MathSciNetGoogle Scholar
  6. 6.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo Google Scholar
  7. 7.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012)Google Scholar
  8. 8.
    Haubelt, C., Teich, J., Feldmann, R., Monien, B.: SAT-Based Techniques in System Design. In: Proc. of DATE 2003, pp. 1168–1169 (2003)Google Scholar
  9. 9.
    Ishebabi, H., Mahr, P., Bobda, C., Gebser, M., Schaub, T.: Answer set vs integer linear programming for automatic synthesis of multiprocessor systems from real-time parallel programs. Journal of Reconfigurable Computing, Article ID 863630 (2009)Google Scholar
  10. 10.
    Lukasiewycz, M., et al.: Combined System Synthesis and Communication Architecture Exploration for MPSoCs. In: Proc. of DATE 2009, pp. 472–477. IEEE Computer Society (2009)Google Scholar
  11. 11.
    Lukasiewycz, M., et al.: Efficient symbolic multi-objective design space exploration. In: Proc. of ASP-DAC 2008, pp. 691–696 (2008)Google Scholar
  12. 12.
    Neema, S.: System Level Synthesis of Adaptive Computing Systems. PhD thesis, Vanderbilt University, Nashville, Tennessee (May 2001)Google Scholar
  13. 13.
    Niemann, R., Marwedel, P.: An Algorithm for Hardware/Software Partitioning Using Mixed Integer Linear Programming. Design Automation for Embedded Systems 2(2), 165–193 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benjamin Andres
    • 1
  • Martin Gebser
    • 1
  • Torsten Schaub
    • 1
  • Christian Haubelt
    • 2
  • Felix Reimann
    • 3
  • Michael Glaß
    • 3
  1. 1.Institute for Computer ScienceUniversity of PotsdamGermany
  2. 2.Institute of Applied Microelectronics and Computer EngineeringUniversity of RostockGermany
  3. 3.Chair for Hardware/Software Co-DesignUniversity of Erlangen-NurembergGermany

Personalised recommendations