The Fourth Answer Set Programming Competition: Preliminary Report

  • Mario Alviano
  • Francesco Calimeri
  • Günther Charwat
  • Minh Dao-Tran
  • Carmine Dodaro
  • Giovambattista Ianni
  • Thomas Krennwallner
  • Martin Kronegger
  • Johannes Oetsch
  • Andreas Pfandler
  • Jörg Pührer
  • Christoph Redl
  • Francesco Ricca
  • Patrik Schneider
  • Martin Schwengerer
  • Lara Katharina Spendier
  • Johannes Peter Wallner
  • Guohui Xiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)

Abstract

Answer Set Programming is a well-established paradigm of declarative programming in close relationship with other declarative formalisms such as SAT Modulo Theories, Constraint Handling Rules, PDDL and many others. Since its first informal editions, ASP systems are compared in the nowadays customary ASP Competition. The fourth ASP Competition, held in 2012/2013, is the sequel to previous editions and it was jointly organized by University of Calabria (Italy) and the Vienna University of Technology (Austria). Participants competed on a selected collection of benchmark problems, taken from a variety of research areas and real world applications. The Competition featured two tracks: the Model& Solve Track, held on an open problem encoding, on an open language basis, and open to any kind of system based on a declarative specification paradigm; and the System Track, held on the basis of fixed, public problem encodings, written in a standard ASP language.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aavani, A., Wu, X(N.), Tasharrofi, S., Ternovska, E., Mitchell, D.: Enfragmo: A system for modelling and solving search problems with logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 15–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver based on constraint learning. In: Cabalar, P., Corunna, Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 55–67. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ Approach to Answer Set Solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 95–109. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    4th ASP Competition Organizing Committee, T.: Official Problem Suite (2013), https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite
  5. 5.
    4th ASP Competition Organizing Committee, T.: Rules and Scoring (2013), https://www.mat.unical.it/aspcomp2013/ParticipationRules
  6. 6.
    Core language for ASP solver competitions, minutes of the steering committee meeting at LPNMR 2004 (2004), https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf
  7. 7.
    Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Programming. In: ICLP 2009 Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2009) (July 2009)Google Scholar
  8. 8.
    Balduccini, M.: An Answer Set Solver for non-Herbrand Programs: Progress Report. In: Costa, V.S., Dovier, A. (eds.) Technical Communications of the 28th International Conference on Logic Programming (ICLP 2012). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2012)Google Scholar
  9. 9.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  10. 10.
    Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.: Mixed Integer Programming Methods for Computing Nonmonotonic Deductive Databases. Journal of the ACM 41, 1178–1215 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Enhancing asp by functions: Decidable classes and implementation techniques. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)Google Scholar
  12. 12.
    Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Ricca, F., Schaub, T.: ASP-Core-2: 4th ASP Competition Official Input Language Format (2013), http://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
  13. 13.
    Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Ricca, F., Schaub, T.: ASP Standardization Activity (2013), http://www.mat.unical.it/aspcomp2013/ASPStandardization/
  14. 14.
    Calimeri, F., Ianni, G., Krenwallner, T., Ricca, F.: The 4th ASP Competition Organizing Committee: The Fourth Answer Set Programming Competition homepage (2013), http://www.mat.unical.it/aspcomp2013/
  15. 15.
    Calimeri, F., Ianni, G., Ricca, F.: Third ASP Competition, File and language formats (2011), http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
  16. 16.
    Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming competition. Theory and Practice of Logic Programming FirstView, 1–19 (2012), http://dx.doi.org/10.1017/S1471068412000105
  17. 17.
    Charwat, G., Ianni, G., Krennwallner, T., Kronegger, M., Pfandler, A., Redl, C., Schwengerer, M., Spendier, L., Wallner, J.P., Xiao, G.: VCWC: A versioning competition workflow compiler. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 233–238. Springer, Heidelberg (2013), http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/lpnmr2013-vcwc.pdf Google Scholar
  18. 18.
    Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer set programming with lazy grounding. Fundamenta Informaticae 96(3), 297–322 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  20. 20.
    Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second Answer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory and Practice of Logic Programming 10(4-6), 465–480 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Drescher, C., Walsh, T.: Answer set solving with lazy nogood generation. In: Dovier, A., Costa, V.S. (eds.) ICLP (Technical Communications). LIPIcs, vol. 17, pp. 188–200. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  23. 23.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV System. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103. Kluwer Academic Publishers (2000)Google Scholar
  24. 24.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database Systems 22(3), 364–418 (1997)CrossRefGoogle Scholar
  25. 25.
    Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer set programming. Artificial Intelligence 175(1), 278–298 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Falkner, A., Haselböck, A., Schenner, G.: Modeling Technical Product Configuration Problems. In: Proceedings of ECAI 2010 Workshop on Configuration, Lisbon, Portugal, pp. 40–46 (2010)Google Scholar
  28. 28.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A portfolio solver for answer set programming: Preliminary report. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Gebser, M., Kaufmann, B., Schaub, T.: Multi-threaded ASP solving with clasp. Theory and Practice of Logic Programming 12(4-5), 525–545 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set solving. In: Rossi, F. (ed.) Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI 2013). IJCAI/AAAI (to appear, 2013)Google Scholar
  32. 32.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 107–124 (2011)MathSciNetMATHGoogle Scholar
  33. 33.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artificial Intelligence 187-188, 52–89 (2012)Google Scholar
  34. 34.
    Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog perspective. Artificial Intelligence 138(1-2), 3–38 (2002)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  37. 37.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT Press, Cambridge (1989)MATHGoogle Scholar
  39. 39.
    Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 111–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. 40.
    Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Disjunctions in Stable Model Semantics. ACM Transactions on Computational Logic 7(1), 1–37 (2006)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Lefèvre, C., Nicolas, P.: The first version of a new ASP solver: ASPeRiX. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  42. 42.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Lifschitz, V.: Answer Set Planning. In: Schreye, D.D. (ed.) Proceedings of the 16th International Conference on Logic Programming (ICLP 1999), pp. 23–37. The MIT Press, Las Cruces (1999)Google Scholar
  44. 44.
    Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. Artificial Intelligence 157(1-2), 115–137 (2004)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: 13th International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 32–42 (2012)Google Scholar
  46. 46.
    Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer (1999)Google Scholar
  47. 47.
    Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic. CoRR abs/1108.5837 (2011)Google Scholar
  48. 48.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  49. 49.
    Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics. Artificial Intelligence 138, 181–234 (2002)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE Transactions on Knowledge and Data Engineering 7(3), 362–377 (1995)CrossRefGoogle Scholar
  51. 51.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor experience. Concurrency and Computation: Practice and Experience 17(2-4), 323–356 (2005)CrossRefGoogle Scholar
  52. 52.
    Wieringa, S., Heljanko, K.: Concurrent clause strengthening. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 116–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  53. 53.
    Wittocx, J., Mariën, M., Denecker, M.: The idp system: a model expansion system for an extension of classical logic. In: Denecker, M. (ed.) International Workshop on Logic and Search (Lash), pp. 153–165 (2008)Google Scholar
  54. 54.
    Zhou, N.F.: The language features and architecture of B-Prolog. Theory and Practice of Logic Programming 12(1-2), 189–218 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mario Alviano
    • 1
  • Francesco Calimeri
    • 1
  • Günther Charwat
    • 2
  • Minh Dao-Tran
    • 2
  • Carmine Dodaro
    • 1
  • Giovambattista Ianni
    • 1
  • Thomas Krennwallner
    • 2
  • Martin Kronegger
    • 2
  • Johannes Oetsch
    • 2
  • Andreas Pfandler
    • 2
  • Jörg Pührer
    • 2
  • Christoph Redl
    • 2
  • Francesco Ricca
    • 1
  • Patrik Schneider
    • 2
  • Martin Schwengerer
    • 2
  • Lara Katharina Spendier
    • 3
  • Johannes Peter Wallner
    • 2
  • Guohui Xiao
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità della CalabriaItaly
  2. 2.Institute of Information SystemsVienna University of TechnologyAustria
  3. 3.Institute of Computer LanguagesVienna University of TechnologyAustria

Personalised recommendations