Advertisement

Linear Logic Programming for Narrative Generation

  • Chris Martens
  • Anne-Gwenn Bosser
  • João F. Ferreira
  • Marc Cavazza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)

Abstract

In this paper, we explore the use of Linear Logic programming for story generation. We use the language Celf to represent narrative knowledge, and its own querying mechanism to generate story instances, through a number of proof terms. Each proof term obtained is used, through a resource-flow analysis, to build a directed graph where nodes are narrative actions and edges represent inferred causality relationships. Such graphs represent narrative plots structured by narrative causality. This approach is a candidate technique for narrative generation which unifies declarative representations and generation via query and deduction mechanisms.

Keywords

Linear Logic Programming Narrative Modelling Celf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.: Logic programming with focusing proofs in Linear Logic. Journal of Logic and Computation 2, 297–347 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bosser, A.G., Cavazza, M., Champagnat, R.: Linear Logic for non-linear storytelling. In: ECAI 2010. Frontiers in Artificial Intelligence and Applications, vol. 215. IOS Press (2010)Google Scholar
  3. 3.
    Bosser, A.-G., Courtieu, P., Forest, J., Cavazza, M.: Structural analysis of narratives with the Coq proof assistant. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 55–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Flaubert, G.: Madame Bovary. Revue de Paris (1857), edition 2001 Collection Folio Classiques, ISBN 9782070413119Google Scholar
  5. 5.
    Girard, J.Y.: Linear Logic. Theoretical Computer Science 50(1), 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Greenland, S., Pearl, J., Robins, J.: Causal diagrams for epidemiologic research. Epidemiology, 37–48 (1999)Google Scholar
  7. 7.
    Hodas, J.S., Miller, D.: Logic programming in a fragment of Intuitionistic Linear Logic. Information and Computation 110(2), 327–365 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Leclerc, Y.: Flaubert, Plans et Scénarios de Madame Bovary, Zuma, Cadeilhan (1995)Google Scholar
  9. 9.
    López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent Linear Logic programming. In: Proceedings of the 7th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (2005)Google Scholar
  10. 10.
    Miller, D.: Overview of Linear Logic programming. Linear Logic in Computer Science 316, 119–150 (2004)CrossRefGoogle Scholar
  11. 11.
    Schack-Nielsen, A., Schürmann, C.: Celf – A logical framework for deductive and concurrent systems (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 320–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Schank, R., Abelson, R.: Scripts, plans, goals and understanding: An inquiry into human knowledge structures. Psychology Press (1977)Google Scholar
  13. 13.
    Schroeder, M.: How to tell a logical story. In: Narrative Intelligence: Papers from the AAAI Fall Symposium. AAAI Press (1999)Google Scholar
  14. 14.
    Young, R.M.: Notes on the use of plan structures in the creation of interactive plot. In: Narrative Intelligence: Papers from the AAAI Fall Symposium. AAAI Press (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chris Martens
    • 1
  • Anne-Gwenn Bosser
    • 2
  • João F. Ferreira
    • 2
  • Marc Cavazza
    • 2
  1. 1.Carnegie Mellon UniversityUSA
  2. 2.Teesside UniversityUSA

Personalised recommendations