Turner’s Logic of Universal Causation, Propositional Logic, and Logic Programming

  • Jianmin Ji
  • Fangzhen Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)


Turner’s logic of universal causation is a general logic for nonmonotonic reasoning. It has its origin in McCain and Turner’s causal action theories which have been translated to propositional logic and logic programming with nested expressions. In this paper, we propose to do the same for Turner’s logic, and show thatTurner’s logic can actually be mapped to McCain and Turner’s causal theories. These results can be used to construct a system for reasoning in Turner’s logic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.: Conflict-Driven Disjunctive Answer Set Solving. In: Brewka, G., Lang, J. (eds.) Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning, KR 2008, pp. 422–432. AAAI Press, Menlo Park (2008)Google Scholar
  2. 2.
    Ferraris, P.: A logic program characterization of causal theories. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 366–371 (2007)Google Scholar
  3. 3.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comput. 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  4. 4.
    Gelfond, M., Lifschitz, V., Przymusińska, H., Truszczyński, M.: Disjunctive Defaults. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, KR 1991, pp. 230–237. Morgan Kaufmann, San Fransisco (1991)Google Scholar
  5. 5.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153(1-2), 49–104 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming Based on Propositional Satisfiability. J. Autom. Reasoning 36(4), 345–377 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Janhunen, T., Niemelä, I.: GNT — A Solver for Disjunctive Logic Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 331–335. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ji, J., Lin, F.: From Turner’s Logic of Universal Causation to the Logic of GK. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 380–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Lee, J.: Nondefinite vs. definite causal theories. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 141–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 357–373. Springer (1999)Google Scholar
  12. 12.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lin, F., Shoham, Y.: A logic of knowledge and justified assumptions. Artificial Intelligence 57(2-3), 271–289 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lin, F., Reiter, R.: Forget it. In: Working Notes of AAAI Fall Symposium on Relevance, pp. 154–159 (1994)Google Scholar
  15. 15.
    McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of the 14th National Conference on Artificial Intelligence, AAAI 1997, pp. 460–465 (1997)Google Scholar
  16. 16.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Turner, H.: Logic of universal causation. Artificial Intelligence 113(1), 87–123 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jianmin Ji
    • 1
  • Fangzhen Lin
    • 2
  1. 1.School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Computer Science and EngineeringThe Hong Kong University of Science and TechnologyHong Kong

Personalised recommendations