Advertisement

Integrating Temporal Extensions of Answer Set Programming

  • Felicidad Aguado
  • Gilberto Pérez
  • Concepción Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)

Abstract

In this paper we study the relation between the two main extensions of Answer Set Programming with temporal modal operators: Temporal Equilibrium Logic (TEL) and Temporal Answer Sets (TAS). On the one hand, TEL is a complete non-monotonic logic that results from the combination of Linear-time Temporal Logic (LTL) with Equilibrium Logic. On the other hand, TAS is based on a richer modal approach, Dynamic LTL (DLTL), whereas its non-monotonic part relies on a reduct-based definition for a particular limited syntax. To integrate both approaches, we propose a Dynamic Linear-time extension of Equilibrium Logic (DTEL) that allows accommodating both TEL and TAS as particular cases. With respect to TEL, DTEL incorporates more expressiveness thanks to the addition of dynamic logic operators, whereas with respect to TAS, DTEL provides a complete non-monotonic semantics applicable to arbitrary theories. In the paper, we identify cases in which both formalisms coincide and explain how this relation can be exploited for adapting existing TEL and TAS computation methods to the general case of DTEL.

Keywords

Temporal Logic Temporal Extension Domain Description Stable Model Semantic Temporal Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communications of the ACM 54, 92–103 (2011)CrossRefGoogle Scholar
  2. 2.
    del Cerro, L.F.: MOLOG: A system that extends Prolog with modal logic. New Generation Computing 4, 35–50 (1986)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gabbay, D.: Modal and temporal logic programming. In: Galton, A. (ed.) Temporal Logics and their Applications, pp. 197–237. Academic Press (1987)Google Scholar
  4. 4.
    Abadi, M., Manna, Z.: Temporal logic programming. Journal of Symbolic Computation 8, 277–295 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baudinet, M.: A simple proof of the completeness of temporal logic programming. In: del Cerro, L.F., Penttonen, M. (eds.) Intensional Logics for Programming, pp. 51–83. Clarendon Press, Oxford (1992)Google Scholar
  6. 6.
    Baldoni, M., Giordano, L., Martelli, A.: A framework for a modal logic programming. In: Porc. of the Joint International Conference and Symposium on Logic Programming, pp. 52–66 (1996)Google Scholar
  7. 7.
    Cabalar, P.: Temporal answer sets. In: Proc. of the 1999 Joint Conference on Declarative Programming, APPIA-GULP-PRODE 1999, pp. 351–366 (1999)Google Scholar
  8. 8.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth International Conference and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  9. 9.
    Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: A first approach. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. Journal of Applied Non-Classical Logics (to appear, 2013)Google Scholar
  11. 11.
    Giordano, L., Martelli, A., Dupré, D.T.: Reasoning about actions with temporal answer sets. TPLP 13, 201–225 (2013)zbMATHGoogle Scholar
  12. 12.
    Giordano, L., Martelli, A., Dupré, D.T.: Verification of action theories in ASP: A complete bounded model checking approach. In: Lisi, F.A. (ed.) Proceedings of the 9th Italian Convention on Computational Logic, CILC 2012. CEUR Workshop Proceedings, vol. 857, pp. 176–190. CEUR-WS.org (2012)Google Scholar
  13. 13.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Kamp, J.A.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California at Los Angeles (1968)Google Scholar
  15. 15.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer (1991)Google Scholar
  16. 16.
    Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Annals of Pure and Applied Logic 96, 187–207 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cabalar, P., Demri, S.: Automata-based computation of temporal equilibrium models. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 57–72. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 42–56 (1930)Google Scholar
  19. 19.
    Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artificial Intelligence 33, 379–412 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vorob’ev, N.N.: A constructive propositional calculus with strong negation. Doklady Akademii Nauk SSR 85, 465–468 (1952) (in Russian)MathSciNetGoogle Scholar
  21. 21.
    Vorob’ev, N.N.: The problem of deducibility in constructive propositional calculus with strong negation. Doklady Akademii Nauk SSR 85, 689–692 (1952) (in Russian)MathSciNetGoogle Scholar
  22. 22.
    Cabalar, P., Diéguez, M.: STeLP – A tool for temporal answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 370–375. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Cabalar, P., Diéguez, M.: ABSTEM – an automata-based solver for temporal equilibrium models (unpublished draft, 2013)Google Scholar
  24. 24.
    Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computation 115, 1–37 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Giordano, L., Martelli, A.: Tableau-based automata construction for dynamic linear time temporal logic. Annals of Mathematics and Artificial Intelligence 46, 289–315 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Felicidad Aguado
    • 1
  • Gilberto Pérez
    • 1
  • Concepción Vidal
    • 1
  1. 1.Department of Computer ScienceUniversity of CorunnaSpain

Personalised recommendations