AGM-Style Belief Revision of Logic Programs under Answer Set Semantics

  • James Delgrande
  • Pavlos Peppas
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)

Abstract

In the past few years, several approaches for revision (and update) of logic programs have been studied. None of these however matched the generality and elegance of the original AGM approach to revision in classical logic. One particular obstacle is the underlying nonmonotonicity of the semantics of logic programs. Recently however, specific revision operators based on the monotonic concept of SE-models (which underlies the answer-set semantics of logic programs) have been proposed. Basing revision of logic programs on sets of SE-models has the drawback that arbitrary sets of SE-models may not necessarily be expressed via a logic program. This situation is similar to the emerging topic of revision in fragments of classical logic. In this paper we show how nonetheless classical AGM-style revision can be extended to various classes of logic programs using the concept of SE-models. That is, we rephrase the AGM postulates in terms of logic programs, provide a semantic construction for revision operators, and then in a representation result show that these approaches coincide. This work is interesting because, on the one hand it shows how the AGM approach can be extended to a seemingly nonmonotonic framework, while on the other hand the formal characterization may provide guiding principles for the development of specific revision operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet functions for contraction and revision. Journal of Symbolic Logic 50(2), 510–530 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alferes, J., Leite, J., Pereira, L., Przymusinska, H., Przymusinski, T.: Dynamic updates of non-monotonic knowledge bases. Journal of Logic Programming 45(1-3), 43–70 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boutilier, C.: Revision sequences and nested conditionals. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 519–531 (1993)Google Scholar
  4. 4.
    Boutilier, C.: Iterated revision and minimal change of conditional beliefs. Journal of Logic and Computation 25, 262–305 (1996)MathSciNetGoogle Scholar
  5. 5.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  6. 6.
    Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. Theory and Practice of Logic Programming 7(6), 745–759 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Creignou, N., Papini, O., Pichler, R., Woltran, S.: Belief revision within fragments of propositional logic. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of the Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning. AAAI Press (2012)Google Scholar
  8. 8.
    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence 89, 1–29 (1997)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Delgrande, J.: A program-level approach to revising logic programs under the answer set semantics. In: Theory and Practice of Logic Programming, 26th Int’l. Conference on Logic Programming (ICLP 2010) Special Issue, vol. 10(4-6), pp. 681–696 (July 2010)Google Scholar
  10. 10.
    Delgrande, J., Peppas, P.: Revising Horn theories. In: Proceedings of the International Joint Conference on Artificial Intelligence, Barcelona, Spain, pp. 839–844 (2011)Google Scholar
  11. 11.
    Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 71–83. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: A model-theoretic approach to belief change in answer set programming. ACM Transactions on Computational Logic 14(2) (2013)Google Scholar
  13. 13.
    Eiter, T., Fink, M., Pührer, J., Tompits, H., Woltran, S.: Model-based recasting in answer-set programming. Technical Report DBAI-TR-2013-83, Institute of Information Systems 184/2, Vienna University of Technology, Austria (2013)Google Scholar
  14. 14.
    Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on causal rejection. Theory and Practice of Logic Programming 2(6), 711–767 (2002)MathSciNetMATHGoogle Scholar
  15. 15.
    Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 97–102 (2005)Google Scholar
  16. 16.
    Flouris, G., Plexousakis, D., Antoniou, G.: On applying the AGM theory to DLs and OWL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 216–231. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Gärdenfors, P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States. The MIT Press, Cambridge (1988)Google Scholar
  18. 18.
    Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52(3), 263–294 (1991)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Krümpelmann, P., Kern-Isberner, G.: Belief base change operations for answer set programming. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 294–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Leite, J.: Evolving Knowledge Bases: Specification and Semantics. IOS Press, Amsterdam (2003)Google Scholar
  21. 21.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Marek, V.W., Truszczyński, M.: Revision programming. Theoretical Computer Science 190, 241–277 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based on basic structural properties. Theory and Practice of Logic Programming 7(4), 451–479 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Peppas, P.: Belief revision. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 317–359. Elsevier Science, San Diego (2008)CrossRefGoogle Scholar
  25. 25.
    Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 147–161. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates. Theory and Practice of Logic Programming 3(6), 671–713 (2003)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set programs. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14. AAAI Press (2012)Google Scholar
  28. 28.
    Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory and Practice of Logic Programming 3(4), 609–622 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Witteveen, C., van der Hoek, W., de Nivelle, H.: Revision of non-monotonic theories: Some postulates and an application to logic programming. In: MacNish, C., Moniz Pereira, L., Pearce, D.J. (eds.) JELIA 1994. LNCS, vol. 838, pp. 137–151. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  30. 30.
    Zacarías, F., Osorio, M., Acosta Guadarrama, J.C., Dix, J.: Updates in Answer Set Programming based on structural properties. In: McIlraith, S., Peppas, P., Thielscher, M. (eds.) Proceedings of the 7th International Symposium on Logical Formalizations of Commonsense Reasoning, pp. 213–219. Fakultät für Informatik (May 2005) ISSN 1430-211XGoogle Scholar
  31. 31.
    Zhang, Y., Foo, N.Y.: Updating logic programs. In: Proceedings of the Thirteenth European Conference on Artificial Intelligence (ECAI 1998), pp. 403–407 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • James Delgrande
    • 1
  • Pavlos Peppas
    • 2
  • Stefan Woltran
    • 3
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Dept of Business AdministrationUniversity of PatrasPatrasGreece
  3. 3.Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations