Extending the Metabolic Network of Ectocarpus Siliculosus Using Answer Set Programming

  • Guillaume Collet
  • Damien Eveillard
  • Martin Gebser
  • Sylvain Prigent
  • Torsten Schaub
  • Anne Siegel
  • Sven Thiele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)


Metabolic network reconstruction is of great biological relevance because it offers a way to investigate the metabolic behavior of organisms. However, reconstruction remains a difficult task at both the biological and computational level. Building on previous work establishing an ASP-based approach to this problem, we present a report from the field resulting in the discovery of new biological knowledge. In fact, for the first time ever, we automatically reconstructed a metabolic network for a macroalgae. We accomplished this by taking advantage of ASP’s combined optimization and enumeration capacities. Both computational tasks build on an improved ASP problem representation, incorporating the concept of reversible reactions. Interestingly, optimization greatly benefits from the usage of unsatisfiable cores available in the ASP solver unclasp. Applied to Ectocarpus siliculosus, only the combination of unclasp and clasp allowed us to obtain a metabolic network able to produce all recoverable metabolites among the experimentally measured ones. Moreover, 70% of the identified reactions are supported by an homologous enzyme in Ectocarpus siliculosus, confirming the quality of the reconstructed network from a biological viewpoint.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabási, A., Oltvai, Z.: Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)CrossRefGoogle Scholar
  2. 2.
    Joyce, A., Palsson, B.: The model organism as a system: Integrating ’omics’ data sets. Nature Reviews Molecular Cell Biology 7(3), 198–210 (2006)CrossRefGoogle Scholar
  3. 3.
    Yamada, T., Bork, P.: Evolution of biomolecular networks: Lessons from metabolic and protein interactions. Nature Reviews Molecular Cell Biology 10(11), 791–803 (2009)CrossRefGoogle Scholar
  4. 4.
    Orth, J., Conrad, T., Na, J., Lerman, J., Nam, H., Feist, A., Palsson, B.: A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Molecular Systems Biology 7, Article 535 (2011)Google Scholar
  5. 5.
    de Oliveira Dal’Molin, C., Quek, L., Palfreyman, R., Brumbley, S., Nielsen, L.: AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiology 152(2), 579–589 (2009)CrossRefGoogle Scholar
  6. 6.
    Zengler, K., Palsson, B.: A road map for the development of community systems (CoSy) biology. Nature Reviews Microbiology 10(5), 366–372 (2012)Google Scholar
  7. 7.
    Swainston, N., Smallbone, K., Mendes, P., Kell, D., Paton, N.: The subliminal toolbox: automating steps in the reconstruction of metabolic networks. Journal of Integrative Bioinformatics 8, Article 186 (2011)Google Scholar
  8. 8.
    Handorf, T., Ebenhöh, O., Heinrich, R.: Expanding metabolic networks: Scopes of compounds, robustness, and evolution. Journal of Molecular Evolution 61(4), 498–512 (2005)CrossRefGoogle Scholar
  9. 9.
    Satish Kumar, V., Dasika, M., Maranas, C.: Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, Article 212 (2007)Google Scholar
  10. 10.
    Christian, N., May, P., Kempa, S., Handorf, T., Ebenhöh, O.: An integrative approach towards completing genome-scale metabolic networks. Molecular BioSystems 5(12), 1889–1903 (2009)CrossRefGoogle Scholar
  11. 11.
    Schaub, T., Thiele, S.: Metabolic network expansion with answer set programming. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  13. 13.
    Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: Dovier, A., Santos Costa, V. (eds.) Technical Communications of the Twenty-Eighth International Conference on Logic Programming, ICLP 2012. Leibniz International Proceedings in Informatics, vol. 17, pp. 212–221. Dagstuhl Publishing (2012)Google Scholar
  14. 14.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artificial Intelligence 187-188, 52–89 (2012)Google Scholar
  15. 15.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo, http://potassco.sourceforge.net
  16. 16.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan and Claypool Publishers (2012)Google Scholar
  17. 17.
    Nikoloski, Z., Grimbs, S., May, P., Selbig, J.: Metabolic networks are NP-hard to reconstruct. Journal of Theoretical Biology 254(4), 807–816 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nikoloski, Z., Grimbs, S., Selbig, J., Ebenhöh, O.: Hardness and approximability of the inverse scope problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 99–112. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Beard, D., Liang, S., Qian, H.: Energy balance for analysis of complex metabolic networks. Biophysical Journal 83(1), 79–86 (2002)CrossRefGoogle Scholar
  20. 20.
    Li, C., Manyà, F.: MaxSAT. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 613–631. IOS Press (2009)Google Scholar
  21. 21.
    Tonon, T., Eveillard, D., Prigent, S., Bourdon, J., Potin, P., Boyen, C., Siegel, A.: Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment. Omics: A Journal of Integrative Biology 15(12), 883–892 (2011)CrossRefGoogle Scholar
  22. 22.
    Karp, P., Paley, S., Romero, P.: The Pathway Tools software. Bioinformatics 18(suppl. 1), S225–S232 (2002)Google Scholar
  23. 23.
    Loira, N., Dulermo, T., Nicaud, J., Sherman, D.: A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Systems Biology 6, Article 35 (2012)Google Scholar
  24. 24.
    Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., Wanko, P.: Domain-specific heuristics in answer set programming. In: des Jardins, M., Littman, M. (eds.) Proceedings of the Twenty-Seventh National Conference on Artificial Intelligence, AAAI 2013. AAAI Press (to appear, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Collet
    • 1
    • 5
  • Damien Eveillard
    • 2
  • Martin Gebser
    • 3
  • Sylvain Prigent
    • 4
    • 5
  • Torsten Schaub
    • 3
  • Anne Siegel
    • 1
    • 5
  • Sven Thiele
    • 5
    • 6
    • 1
  1. 1.CNRS, UMR 6074 IRISARennesFrance
  2. 2.UMR 6241 LINAUniversité de NantesNantesFrance
  3. 3.Institut für InformatikUniversität PotsdamDeutschland
  4. 4.UMR 6074 IRISAUniversity of Rennes 1RennesFrance
  5. 5.INRIA, Centre Rennes-Bretagne-Atlantique, Projet DylissRennes cedexFrance
  6. 6.INRIA-CIRICSantiago de ChileChile

Personalised recommendations