An ASP Application in Integrative Biology: Identification of Functional Gene Units

  • Philippe Bordron
  • Damien Eveillard
  • Alejandro Maass
  • Anne Siegel
  • Sven Thiele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)

Abstract

Integrating heterogeneous knowledge is necessary to elucidate the regulations in biological systems. In particular, such an integration is widely used to identify functional units, that are sets of genes that can be triggered by the same external stimuli, as biological stresses, and that are linked to similar responses of the system. Although several models and algorithms shown great success for detecting functional units on well-known biological species, they fail in identifying them when applied to more exotic species, such as extremophiles, that are by nature unrefined. Indeed, approved methods on unrefined models suffer from an explosion in the number of solutions for functional units, that are merely combinatorial variations of the same set of genes. This paper overcomes this crucial limitation by introducing the concept of “genome segments”. As a natural extension of recent studies, we rely on the declarative modeling power of answer set programming (ASP) to encode the identification of shortest genome segments (SGS). This study shows, via experimental evidences, that SGS is a new model of functional units with a predictive power that is comparable to existing methods. We also demonstrate that, contrary to existing methods, SGS are stable in (i) computational time and (ii) ability to predict functional units when one deteriorates the biological knowledge, which simulates cases that occur for exotic species.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rocha, E.P.C.: The organization of the bacterial genome. Annual Review of Genetics 42, 211–233 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boyer, F., Morgat, A., Labarre, L., Pothier, J., Viari, A.: Syntons, metabolons and interactons: an exact graph-theoretical approach for exploring neighbourhood between genomic and functional data. Bioinformatics 21, 4209–4215 (2005)CrossRefGoogle Scholar
  3. 3.
    Zhang, H.H., Yin, Y.Y., Olman, V.V., Xu, Y.Y.: Genomic arrangement of regulons in bacterial genomes. PLoS ONE 7, e29496–e29496 (2011)Google Scholar
  4. 4.
    Bordron, P., Eveillard, D., Rusu, I.: Integrated analysis of the gene neighbouring impact on bacterial metabolic networks. IET Systems Biology 5, 261–268 (2011)CrossRefGoogle Scholar
  5. 5.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  6. 6.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo (2010), http://potassco.sourceforge.net
  7. 7.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Veloso, M. (ed.) Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 386–392. AAAI Press/The MIT Press (2007)Google Scholar
  8. 8.
    Schaub, T., Thiele, S.: Metabolic network expansion with answer set programming. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Fayruzov, T., Cock, M.D., Cornelis, C., Vermeir, D.: Modeling protein interaction networks with answer set programming. In: IEEE Int. Conf. on Bioinformatics and Biomedicine, BIBM 2009, pp. 99–104 (2009)Google Scholar
  10. 10.
    Durzinsky, M., Marwan, W., Ostrowski, M., Schaub, T., Wagler, A.: Automatic network reconstruction using ASP. Theory and Practice of Logic Programming 11, 749–766 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Papatheodorou, I., Ziehm, M., Wieser, D., Alic, N., Partridge, L., Thornton, J.M.: Using answer set programming to integrate rna expression with signalling pathway information to infer how mutations affect ageing. PLoS ONE 7, e50881 (2012)Google Scholar
  12. 12.
    Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set programming. Theory and Practice of Logic Programming 11, 821–839 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Brouwer, R.W.W., Kuipers, O.P., van Hijum, S.A.F.T.: The relative value of operon predictions. Briefings in Bioinformatics 9, 367–375 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philippe Bordron
    • 1
    • 2
  • Damien Eveillard
    • 4
  • Alejandro Maass
    • 2
    • 3
  • Anne Siegel
    • 6
    • 5
  • Sven Thiele
    • 1
    • 5
    • 6
  1. 1.Inria-CiricSantiagoChile
  2. 2.Center of Mathematical Modeling and Center for Genome RegulqtionUniversidad de ChileSantiagoChile
  3. 3.Department of Mathematical EngineeringUniversidad de ChileSantiagoChile
  4. 4.ComBi, lina, cnrs umr 6241Université de NantesNantesFrance
  5. 5.Inria, Centre Rennes-Bretagne-Atlantique, Projet DylissRennes cedexFrance
  6. 6.Cnrs, umr 6074 irisaRennesFrance

Personalised recommendations