Advertisement

Prolog and ASP Inference under One Roof

  • Marcello Balduccini
  • Yuliya Lierler
  • Peter Schüller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8148)

Abstract

Answer set programming (ASP) is a declarative programming paradigm stemming from logic programming that has been successfully applied in various domains. Despite amazing advancements in ASP solving, many applications still pose a challenge that is commonly referred to as grounding bottleneck. Devising, implementing, and evaluating a method that alleviates this problem for certain application domains is the focus of this paper. The proposed method is based on combining backtracking-based search algorithms employed in answer set solvers with SLDNF resolution from prolog. Using prolog inference on non-ground portions of a given program, both grounding time and the size of the ground program can be substantially reduced.

Keywords

Answer Set Programming Prolog Grounding Bottleneck 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alviano, M., Faber, W.: Dynamic magic sets and super-coherent answer set programs. AI Commun. 24(2), 125–145 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Apt, K., Bezem, M.: Acyclic programs. New Generation Computing 9, 335–363 (1991)CrossRefGoogle Scholar
  3. 3.
    Balduccini, M.: Representing constraint satisfaction problems in answer set programming. In: Workshop on Answer Set Programming and Other Computing Paradigms, ASPOCP (2009)Google Scholar
  4. 4.
    Brewka, G., Niemelä, I., Truszczyński, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  5. 5.
    de Cat, B., Denecker, M., Stuckey, P.J.: Lazy model expansion by incremental grounding. In: Technical Communications of the International Conference on Logic Programming, ICLP, pp. 201–211 (2012)Google Scholar
  6. 6.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing efficient evaluation of HEX programs by modular decomposition. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 93–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A Prover for Semantic-Web Reasoning under the Answer-Set Semantics. In: Workshop on Applications of Logic Programming in the Semantic Web and Semantic Web Services, ALPSWS, pp. 33–39. CEUR WS (2006)Google Scholar
  9. 9.
    Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence 175, 236–263 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable models. In: International Joint Conference on Artificial Intelligence, IJCAI, pp. 797–803 (2009)Google Scholar
  11. 11.
    Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of Logic Programming 5, 45–74 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Gebser, M., Kaminski, R., Schaub, T.: aspcud: A linux package configuration tool based on answer set programming. In: International Workshop on Logics for Component Configuration, LoCoCo (2011)Google Scholar
  14. 14.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: International Joint Conference on Artificial Intelligence, IJCAI, pp. 386–392. MIT Press (2007)Google Scholar
  15. 15.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lee, J.: A model-theoretic counterpart of loop formulas. In: International Joint Conference on Artificial Intelligence, IJCAI, pp. 503–508. Professional Book Center (2005)Google Scholar
  17. 17.
    Lierler, Y.: Abstract answer set solvers. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 377–391. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Lierler, Y.: On the relation of constraint answer set programming languages and algorithms. In: AAAI Conference on Artificial Intelligence, AAAI. MIT Press (2012)Google Scholar
  19. 19.
    Lierler, Y., Smith, S., Truszczynski, M., Westlund, A.: Weighted-sequence problem: ASP vs CASP and declarative vs problem-oriented solving. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149, pp. 63–77. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Lierler, Y., Truszczyński, M.: Transition systems for model generators — a unifying approach. In: Theory and Practice of Logic Programming, International Conference on Logic Programming (ICLP) Special Issue 11(4-5) (2011)Google Scholar
  21. 21.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25, 369–389 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic programming. Annals of Mathematics and Artificial Intelligence (2008)Google Scholar
  23. 23.
    Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer (2000)Google Scholar
  24. 24.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog decision support system for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcello Balduccini
    • 1
  • Yuliya Lierler
    • 2
  • Peter Schüller
    • 3
  1. 1.Eastman Kodak CompanyUSA
  2. 2.University of Nebraska at OmahaUSA
  3. 3.Sabancı UniversityTurkey

Personalised recommendations