Self-management of Hybrid Networks – Hidden Costs Due to TCP Performance Problems

  • Giovane C. M. Moura
  • Aiko Pras
  • Tiago Fioreze
  • Pieter-Tjerk de Boer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8115)

Abstract

Self-management is one of the most popular research topics in network and systems management. Little is known, however, regarding the costs, in particular with respect to performance, of self-management solutions. The goal of this paper is therefore to analyze such hidden performance costs. Our analysis will be performed within the context of a specific example, namely automatically moving elephant flows from the routed IP layer to optical light-paths (lambdas) in hybrid networks. The advantage of moving elephant flows to light-paths is that such flows will experience lower delays, lower jitter and lower loss, thus better Quality of Service (QoS), while reducing the load at the IP-level, which means that the remaining flows will also experience better QoS. The lower delay at the optical level may cause temporary reordering of packets, however, since the first packet over the light-path may arrive at the receiver side before the last routed IP packet has arrived. Such reordering may lead to short but severe performance problems at the TCP level. We systematically analyze under which conditions such TCP performance problems occur, and how severe these problems are. Although our conclusions are specific to self-management of hybrid networks, it demonstrates by means of an example that self-management solutions may also introduce new problems, which must further be investigated before conclusions can be drawn regarding the pros and cons of self-management.

References

  1. 1.
    Pras, A., Schönwälder, J., Burgess, M., Festor, O., Pérez, G., Stadler, R., Stiller, B.: Key Research Challenges in Network Management. IEEE Communications Magazine 45(10), 104–110 (2007)CrossRefGoogle Scholar
  2. 2.
    Jennings, B., van der Meer, S., Balasubramaniam, S., Botvich, D., Foghlu, M., Donnelly, W., Strassner, J.: Towards Autonomic Management of Communications Networks. IEEE Communications Magazine 45(10), 112–121 (2007)CrossRefGoogle Scholar
  3. 3.
    Lupu, E., Dulay, N., Sloman, M., Sventek, J., Heeps, S., Strowes, S., Twidle, K., Keoh, S.L., Schaeffer-Filho, A.: AMUSE: Autonomic Management of Ubiquitous e-Health Systems. Concurr. Comput.: Pract. Exper. 20(3), 277–295 (2008)CrossRefGoogle Scholar
  4. 4.
    Cheng, L., Galis, A., Mathieu, B., Jean, K., Ocampo, R., Mamatas, L., Rubio-Loyola, J., Serrat, J., Berl, A., de Meer, H., Davy, S., Movahedi, Z., Lefevre, L.: Self-organising Management Overlays for Future Internet Services. In: van der Meer, S., Burgess, M., Denazis, S. (eds.) MACE 2008. LNCS, vol. 5276, pp. 74–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Derbel, H., Agoulmine, N., Salaün, M.: ANEMA: Autonomic Network Management Architecture to Support Self-configuration and Self-optimization in IP networks. Comput. Netw. 53(3), 418–430 (2009)MATHCrossRefGoogle Scholar
  6. 6.
    Fioreze, T., Granville, L., Sadre, R., Pras, A.: A Statistical Analysis of Network Parameters for the Self-management of Lambda-Connections. In: Sadre, R., Pras, A. (eds.) AIMS 2009 Enschede. LNCS, vol. 5637, pp. 15–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Fioreze, T., Pras, A.: Self-management of Lambda-connections in Optical Networks. In: Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543, pp. 212–215. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Fioreze, T., van de Meent, R., Pras, A.: An Architecture for the Self-management of Lambda-Connections in Hybrid Networks. In: Pras, A., van Sinderen, M. (eds.) EUNICE 2007. LNCS, vol. 4606, pp. 141–148. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fioreze, T.: Self-Management of Hybrid Optical and Packet Switching Networks. PhD thesis, Universiteit Twente (February 2010)Google Scholar
  10. 10.
    Moura, G.C.M., Fioreze, T., de Boer, P.-T., Pras, A.: Optical switching impact on TCP throughput limited by TCP buffers. In: Nunzi, G., Scoglio, C., Li, X. (eds.) IPOM 2009. LNCS, vol. 5843, pp. 161–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Bennett, J., Partridge, C., Shectman, N.: Packet reordering is not pathological network behavior. IEEE/ACM Transactions on Networking 7(6), 789–798 (1999)CrossRefGoogle Scholar
  13. 13.
    Zhang, M., Karp, B., Floyd, S., Peterson, L.: RR-TCP: a reordering-robust TCP with DSACK. In: 11th IEEE International Conference on Network Protocols, pp. 95–106 (November 2003)Google Scholar
  14. 14.
    Karlsson, J., Hurtig, P., Brunstrom, A., Kassler, A., Di Stasi, G.: Impact of multi-path routing on TCP performance. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–3 (June 2012)Google Scholar
  15. 15.
    Timmer, M., de Boer, P., Pras, A.: How to Identify the Speed Limiting Factor of a TCP Flow. In: 4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, pp. 17–24 ( April 2006)Google Scholar
  16. 16.
    Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008)CrossRefGoogle Scholar
  17. 17.
    Wei, D.X., Cao, P.: NS-2 TCP-Linux: an NS-2 TCP Implementation with Congestion Control Algorithms from Linux. In: WNS2 2006: The 2006 Workshop on NS-2: The IP Network Simulator. ACM, New York (2006)Google Scholar
  18. 18.
    Steward, R. (ed.): Stream Control Transmission Protocol (SCTP). RFC 4960 (2007)Google Scholar
  19. 19.
    Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol (DCCP). RFC 4340 (2006)Google Scholar
  20. 20.
    Floyd, S., Kohler, E.: Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 2: TCP-like Congestion Control. RFC 4341 (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Giovane C. M. Moura
    • 1
  • Aiko Pras
    • 1
  • Tiago Fioreze
    • 1
  • Pieter-Tjerk de Boer
    • 1
  1. 1.Centre for Telematics and Information Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Design and Analysis of Communications Systems (DACS)University of TwenteEnschedeThe Netherlands

Personalised recommendations