Balanced XOR-ed Coding

  • Katina Kralevska
  • Danilo Gligoroski
  • Harald Øverby
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8115)


This paper concerns with the construction of codes over GF(2) which reach the max-flow for single source multicast acyclic networks with delay. The coding is always a bitwise XOR of packets with equal lengths, and is based on highly symmetrical and balanced designs. For certain setups and parameters, our approach offers additional plausible security properties: an adversary needs to eavesdrop at least max-flow links in order to decode at least one original packet.


XOR coding GF(2) Latin squares Latin rectangles 


  1. 1.
    Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Transactions on Information Theory 46, 1204–1216 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bhattad, K., Narayanan, K.R.: Weakly secure network coding. In: Proc. First Workshop on Network Coding, Theory, and Applications, NetCod (2005)Google Scholar
  3. 3.
    Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. Chapman, Hall/CRC (2006)Google Scholar
  4. 4.
    Colbourn, C.J., Dinitz, J.H., Stinson, D.R.: Applications of combinatorial designs to communications, cryptography, and networking (1999)Google Scholar
  5. 5.
    Hall, P.: On representatives of subsets. J. London Math. Soc. 37, 26–30 (1935)Google Scholar
  6. 6.
    Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. IEEE Transactions on Information Theory 52, 4413–4430 (2006)CrossRefGoogle Scholar
  7. 7.
    Jacobson, M.T., Matthews, P.: Generating uniformly distributed random latin squares. Journal of Combinatorial Designs 6, 405–437 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jaggi, S., Cassuto, Y., Effros, M.: Low complexity encoding for network codes. In: IEEE International Symposium on Information Theory, pp. 40–44 (2006)Google Scholar
  9. 9.
    Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., Crowcroft, J.: XORs in the air: Practical wireless network coding. IEEE/ACM Trans. Netw. 3, 497–510 (2008)CrossRefGoogle Scholar
  10. 10.
    Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Trans. Netw. 5, 782–795 (2003)CrossRefGoogle Scholar
  11. 11.
    Lawler, E.: Combinatorial Optimization: Networks and Matroids. Dover Publications (2001)Google Scholar
  12. 12.
    Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on Information Theory 2, 371–381 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Médard, M., Sprintson, A.: Network coding. Fundamentals and Applications. Academic Press (2012)Google Scholar
  14. 14.
    Pedersen, M.V., Fitzek, F.H.P., Larsen, T.: Implementation and performance evaluation of network coding for cooperative mobile devices. In: IEEE Cognitive and Cooperative Wireless Networks Workshop (2008)Google Scholar
  15. 15.
    Qureshi, J., Foh, C.H., Cai, J.: Optimal solution for the index coding problem using network coding over gf(2). In: IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 209–217 (2012)Google Scholar
  16. 16.
    Riis, S.: Linear versus nonlinear boolean functions in network flow. In: CISS (2004)Google Scholar
  17. 17.
    Rouayheb, S.Y.E., Sprintson, A., Georghiades, C.N.: On the index coding problem and its relation to network coding and matroid theory. Submitted to IEEE Transactions on Information Theory (2008)Google Scholar
  18. 18.
    Shojania, H., Li, B.: Random network coding on the iphone: fact or fiction? In: NOSSDAV (2009)Google Scholar
  19. 19.
    Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer (2003)Google Scholar
  20. 20.
    Vingelmann, P., Pedersen, M.V., Fitzek, F.H.P., Heide, J.: Multimedia distribution using network coding on the iphone platform. In: Proceedings of the 2010 ACM Multimedia Workshop on Mobile Cloud Media Computing (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Katina Kralevska
    • 1
  • Danilo Gligoroski
    • 1
  • Harald Øverby
    • 1
  1. 1.Department of Telematics, Faculty of Information Technology, Mathematics and Electrical EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations