Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application to S5

  • Björn Lellmann
  • Dirk Pattinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8123)

Abstract

Which modal logics can be ‘naturally’ captured by a sequent system? Clearly, this question hinges on what one believes to be natural, i.e. which format of sequent rules one is willing to accept. This paper studies the relationship between the format of sequent rules and the corresponding syntactical shape of axioms in an equivalent Hilbert-system. We identify three different such formats, the most general of which captures most logics in the S5-cube. The format is based on restricting the context in rule premises and the correspondence is established by translating axioms into rules of our format and vice versa. As an application we show that there is no set of sequent rules of this format which is sound and cut-free complete for S5 and for which cut elimination can be shown by the standard permutation-of-rules argument.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A., Lahav, O.: Kripke semantics for basic sequent systems. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 43–57. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)Google Scholar
  3. 3.
    Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Chellas, B.F.: Modal Logic. Cambridge University Press (1980)Google Scholar
  5. 5.
    Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural logics: Cut-elimination and completions. Ann. Pure Appl. Logic 163, 266–290 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the investigation of paraconsistent and other logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 119–133. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Z. 39(2), 176–210 (1934)MathSciNetGoogle Scholar
  8. 8.
    Ghilardi, S.: Unification in intuitionistic logic. J. Symb. Log. 64(2), 859–880 (1999)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Goré, R.: Cut-free sequent and tableau systems for propositional diodorean modal logics. Studia Logica 53, 433–457 (1994)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kracht, M.: Power and weakness of the modal display calculus. In: Wansing, H. (ed.) Proof Theory of Modal Logic, pp. 93–121. Kluwer (1996)Google Scholar
  11. 11.
    Lellmann, B., Pattinson, D.: Cut elimination for shallow modal logics. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 211–225. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Lellmann, B., Pattinson, D.: Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic. In: Lodaya, K. (ed.) ICLA 2013. LNCS (LNAI), vol. 7750, pp. 148–160. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Negri, S., von Plato, J.: Structural proof theory. Cambridge University Press (2001)Google Scholar
  15. 15.
    Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic. Trends in Logic, vol. 32. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, 2nd edn., vol. 43. Cambridge University Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Björn Lellmann
    • 1
  • Dirk Pattinson
    • 1
    • 2
  1. 1.Department of ComputingImperial College LondonUK
  2. 2.Research School of Computer ScienceThe Australian National UniversityAustralia

Personalised recommendations