A Refined Tableau Calculus with Controlled Blocking for the Description Logic \(\mathcal{SHOI}\)

  • Mohammad Khodadadi
  • Renate A. Schmidt
  • Dmitry Tishkovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8123)

Abstract

The paper presents a tableau calculus with several refinements for reasoning in the description logic \(\mathcal{SHOI}\). The calculus uses non-standard rules for dealing with TBox statements. Whereas in existing tableau approaches a fixed rule is used for dealing with TBox statements, we use a dynamically generated set of refined rules. This approach has become practical because reasoners with flexible sets of rules can be generated with the tableau prover generation prototype MetTel. We also define and investigate variations of the unrestricted blocking mechanism in which equality reasoning is realised by ordered rewriting and the application of the blocking rule is controlled by excluding its application to a fixed, finite set of individual terms. Reasoning with the unique name assumption and excluding ABox individuals from the application of blocking can be seen as two separate instances of the latter. Experiments show the refinements lead to fewer rule applications and improved performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau calculi for \(\mathcal{CSL}\) over minspaces. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 52–66. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69(1), 5–40 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Logic Comput. 17(3), 517–554 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cialdea Mayer, M., Cerrito, S.: Nominal substitution at work with the global and converse modalities. In: Proc. AiML-8, pp. 57–74. College Publ. (2010)Google Scholar
  5. 5.
    Duc, C.L., Lamolle, M.: Decidability of description logics with transitive closure of roles in concept and role inclusion axioms. In: Proc. DL 2010. CEUR Workshop Proceedings, vol. 573 (2010)Google Scholar
  6. 6.
    Fitting, M.: Proof methods for modal and intuitionistic logics. Kluwer (1983)Google Scholar
  7. 7.
    Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. Semantic Web 2(1), 11–21 (2011)Google Scholar
  8. 8.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. KR 2006, pp. 57–67. AAAI Press (2006)Google Scholar
  9. 9.
    Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. J. Logic Comput. 9(3), 385–410 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Automat. Reasoning 39(3), 249–276 (2007)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: An abstract tableau calculus for the description logic SHOI using unrestricted blocking and rewriting. In: Proc. DL 2012. CEUR Workshop Proceedings, vol. 846, pp. 224–234 (2012)Google Scholar
  13. 13.
    Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with controlled blocking for the description logic SHOI (2013), http://www.mettel-prover.org/papers/controlled.pdf
  14. 14.
    Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with controlled blocking for the description logic SHOI. To Appear in Proc. DL 2013. CEUR Workshop Proceedings (2013)Google Scholar
  15. 15.
    Matentzoglu, N., Bail, S., Parsia, B.: A corpus of OWL DL ontologies. To Appear in Proc. DL 2013. CEUR Workshop Proceedings (2013)Google Scholar
  16. 16.
    Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics with role negation. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 438–451. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description logics, modal logics and related first-order fragments. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 194–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Logical Methods in Comput. Sci. 7(2), 1–32 (2011)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full role negation and identity. arXiv e-Print, abs/1208.1476 (2012)Google Scholar
  20. 20.
    Tishkovsky, D., Schmidt, R.A.: Refinement in the tableau synthesis framework. arXiv e-Print, abs/1305.3131 (2013)Google Scholar
  21. 21.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: Mettel2: Towards a tableau prover generation platform. In: Proc. PAAR 2012. EasyChair Proceedings (2012)Google Scholar
  22. 22.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 492–495. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    TONES. The tones ontology repository (March 5, 2013)Google Scholar
  24. 24.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohammad Khodadadi
    • 1
  • Renate A. Schmidt
    • 1
  • Dmitry Tishkovsky
    • 1
  1. 1.School of Computer ScienceThe University of ManchesterUK

Personalised recommendations