Advertisement

Psyche: A Proof-Search Engine Based on Sequent Calculus with an LCF-Style Architecture

  • Stéphane Graham-Lengrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8123)

Abstract

Psyche is a modular proof-search engine designed for either interactive or automated theorem proving, and aiming at two things: a high level of confidence about the output of the theorem proving process and the ability to apply and combine a wide range of techniques. It addresses the first aim by adopting and extending the LCF architecture to guarantee, using private types, not only the correctness but also the completeness of proof search. It addresses the second by offering a much more appropriate API than just the primitives corresponding to the inference rules of the logic in natural deduction: it uses instead a focused sequent calculus for polarised classical logic. Finally, Psyche features the ability to call decision procedures such as those used in Sat-Modulo-Theories solvers. We therefore illustrate Psyche by using it for SMT-solving.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3), 297–347 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Besson, F., Cornilleau, P.-E., Pichardie, D.: Modular SMT proofs for fast reflexive checking inside Coq. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 151–166. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Farooque, M., Graham-Lengrand, S.: Sequent calculi with procedure calls. Technical report, Laboratoire d’Informatique de l’Ecole Polytechnique (January 2013), http://hal.archives-ouvertes.fr/hal-00779199
  5. 5.
    Farooque, M., Graham-Lengrand, S., Mahboubi, A.: A bisimulation between DPLL(T) and a proof-search strategy for the focused sequent calculus. In: Momigliano, A., Pientka, B., Pollack, R. (eds.) Proceedings of the 2013 International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2013), Boston, USA. ACM Press (September 2013)Google Scholar
  6. 6.
    Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gordon, M.J., Milner, R.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)CrossRefzbMATHGoogle Scholar
  8. 8.
    The Isabelle theorem prover, http://isabelle.in.tum.de/
  9. 9.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. of the ACM Press 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S., Ternovska, E. (eds.) IWIL 2010. EPiC Series, vol. 2, pp. 1–11. EasyChair (2012)Google Scholar
  11. 11.
    Psyche: the Proof-Search factorY for Collaborative HEuristics, http://www.lix.polytechnique.fr/~lengrand/Psyche/
  12. 12.
    Weber, T.: SMT solvers: New oracles for the HOL theorem prover. International Journal on Software Tools for Technology Transfer (STTT) 13(5), 419–429 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stéphane Graham-Lengrand
    • 1
  1. 1.CNRSÉcole PolytechniqueFrance

Personalised recommendations