Semantically Guided Evolution of \(\mathcal{SHI}\) ABoxes

  • Ulrich Furbach
  • Claudia Schon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8123)


This paper presents a method for the evolution of \(\mathcal{SHI}\) ABoxes which is based on a compilation technique of the knowledge base. For this the ABox is regarded as an interpretation of the TBox which is close to a model. It is shown, that the ABox can be used for a semantically guided transformation resulting in an equisatisfiable knowledge base. We use the result of this transformation to efficiently delete assertions from the ABox. Furthermore, insertion of assertions as well as repair of inconsistent ABoxes is addressed. For the computation of the necessary actions for deletion, insertion and repair, the E-KRHyper theorem prover is used.


Knowledge Base Minimal Model Description Logic Ground Atom Instance Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aravindan, C., Baumgartner, P.: Theorem proving techniques for view deletion in databases. Journal of Symbolic Computation 29, 2000 (2000)Google Scholar
  2. 2.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput. 20(1), 5–34 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Semantically Guided Theorem Proving for Diagnosis Applications. In: Pollack, M.E. (ed.) IJCAI 1997, Nagoya. Morgan Kaufmann (1997)Google Scholar
  4. 4.
    Bender, M., Pelzer, B., Schon, C.: System description: E-KRHyper 1.4 - Extensions for unique names and description logic. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 126–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Updating aboxes in DL-Lite. In: Laender, A.H.F., Lakshmanan, L.V.S. (eds.) AMW. CEUR Workshop Proceedings, vol. 619. (2010)Google Scholar
  6. 6.
    Chu, H., Plaisted, D.A.: Semantically guided first-order theorem proving using hyper-linking. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 192–206. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and erasure in description logic ontologies. J. Log. and Comput. 19 (2009)Google Scholar
  8. 8.
    Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient calculi and implementations. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1241–1354. Elsevier, MIT Press (2001)Google Scholar
  9. 9.
    Furbach, U., Schon, C.: Semantically guided evolution of SHI aboxes. Reports of the Faculty of Informatics 4/2013, Universität Koblenz-Landau (2013),
  10. 10.
    Grau, B.C., Ruiz, E.J., Kharlamov, E., Zhelenyakov, D.: Ontology evolution under semantic constraints. In: Proc. of the 13th Int. Conference on Principles of Knowledge Representation and Reasoning (2012)Google Scholar
  11. 11.
    Halashek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syntactic updates. In: Meersman, R., Tari, Z. (eds.) OTM 2006, Part I. LNCS, vol. 4275, pp. 722–737. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Lenzerini, M., Savo, D.F.: On the evolution of the instance level of DL-Lite knowledge bases. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Description Logics. CEUR Workshop Proceedings, vol. 745. (2011)Google Scholar
  16. 16.
    Liu, H., Lutz, C., Milicic, M., Wolter, F.: Foundations of instance level updates in expressive description logics. Artificial Intelligence 175(18), 2170–2197 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Motik, B., Shearer, R., Horrocks, I.: Optimized Reasoning in Description Logics Using Hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 67–83. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies. In: IJCAI 2011. AAAI Press (2011)Google Scholar
  20. 20.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) IJCAI. Morgan Kaufmann (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ulrich Furbach
    • 1
  • Claudia Schon
    • 1
  1. 1.University of Koblenz-LandauGermany

Personalised recommendations