Evaluating the Energy Efficiency of OLTP Operations

A Case Study on PostgreSQL
  • Raik Niemann
  • Nikolaos Korfiatis
  • Roberto Zicari
  • Richard Göbel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8127)


With the continuous increase of online services as well as energy costs, energy consumption becomes a significant cost factor for the evaluation of data center operations. A significant contributor to that is the performance of database servers which are found to constitute the backbone of online services. From a software approach, while a set of novel data management technologies appear in the market e.g. key-value based or in-memory databases, classic relational database management systems (RDBMS) are still widely used. In addition from a hardware perspective, the majority of database servers is still using standard magnetic hard drives (HDDs) instead of solid state drives (SSDs) due to lower cost of storage per gigabyte, disregarding the performance boost that might be given due to high cost.

In this study we focus on a software based assessment of the energy consumption of a database server by running three different and complete database workloads namely TCP-H, Star Schema Benchmark -SSB as well a modified benchmark we have derived for this study called W22. We profile the energy distribution among the most important server components and by using different resource allocation we assess the energy consumption of a typical open source RDBMS (PostgreSQL) on a standard server in relation with its performance (measured by query time).

Results confirm the well-known fact that even for complete workloads, optimization of the RDBMS results to lower energy consumption.


Main Memory Database Server Hard Drive Query Plan Solid State Drive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. Proc. VLDB Endow. 2(1), 922–933 (2009), http://dl.acm.org/citation.cfm?id=1687627.1687731 Google Scholar
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010), http://doi.acm.org/10.1145/1721654.1721672 CrossRefGoogle Scholar
  3. 3.
    Barroso, L.A., Holzle, U.: The Case for Energy-Proportional Computing. Computer 40(12), 33–37 (2007)CrossRefGoogle Scholar
  4. 4.
    Beckmann, A., Meyer, U., Sanders, P., Singler, J.: Energy-efficient sorting using solid state disks. In: Green Computing Conference 2010, pp. 191–202 (2010)Google Scholar
  5. 5.
    Graefe, G.: Database servers tailored to improve energy efficiency. In: Proceedings of the 2008 EDBT Workshop on Software Engineering for Tailor-Made Data Management, SETMDM 2008, pp. 24–28. ACM, New York (2008), http://doi.acm.org/10.1145/1385486.1385494 CrossRefGoogle Scholar
  6. 6.
    Härder, T., Hudlet, V., Ou, Y., Schall, D.: Energy efficiency is not enough, energy proportionality is needed! In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp. 226–239. Springer, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=1996686.1996716 CrossRefGoogle Scholar
  7. 7.
    O’Neil, P.E., O’Neil, E.J., Chen, X.: The Star Schema Benchmark (SSB), revision 3 (2007), http://www.cs.umb.edu
  8. 8.
    Papadimitriou, C.H.: Computational complexity. In: Encyclopedia of Computer Science, pp. 260–265. John Wiley and Sons Ltd., Chichester, http://dl.acm.org/citation.cfm?id=1074100.1074233
  9. 9.
    Poess, M., Floyd, C.: New TPC benchmarks for decision support and web commerce. SIGMOD Rec. 29(4), 64–71 (2000), http://doi.acm.org/10.1145/369275.369291 CrossRefGoogle Scholar
  10. 10.
    Polte, M., Simsa, J., Gibson, G.: Comparing performance of solid state devices and mechanical disks. In: Petascale Data Storage Workshop, PDSW 2008, 3rd edn., pp. 1–7 (2008)Google Scholar
  11. 11.
    Schall, D., Hudlet, V., Härder, T.: Enhancing energy efficiency of database applications using SSDs. In: Proceedings of the Third C* Conference on Computer Science and Software Engineering, C3S2E 2010, pp. 1–9. ACM, New York (2010), http://doi.acm.org/10.1145/1822327.1822328 CrossRefGoogle Scholar
  12. 12.
    Schröder-Preikschat, W., Wilkes, J., Isaacs, R., Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., Rowstron, A.: Migrating server storage to SSDs. In: Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys 2009, p. 145. ACM, New York (2009)Google Scholar
  13. 13.
    Harizopoulos, S., Shah, M.A., Meza, J., Ranganathan, P.: Energy Efficiency: The New Holy Grail of Data Management Systems Research. In: CIDR 2009 (2009)Google Scholar
  14. 14.
    Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the energy efficiency of a database server. In: Proceedings of the 2010 International Conference on Management of data, SIGMOD 2010, pp. 231–242. ACM, New York (2010)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Feng, L., Xue, W., Song, Z.: A survey on energy-efficient data management. SIGMOD Rec. 40(2), 17–23 (2011), http://doi.acm.org/10.1145/2034863.2034867 CrossRefGoogle Scholar
  16. 16.
    Lang, W., Patel, J.M.: Towards Eco-friendly Database Management Systems. In: CIDR 2009 (2009)Google Scholar
  17. 17.
    Lang, W., Harizopoulos, S., Patel, J.M., Shah, M.A., Tsirogiannis, D.: Towards Energy-Efficient Database Cluster Design. CoRR abs/1208.1933 (2012)Google Scholar
  18. 18.
    Xu, Z.: Building a power-aware database management system. In: Proceedings of the Fourth SIGMOD PhD Workshop on Innovative Database Research, IDAR 2010, pp. 1–6. ACM, New York (2010), http://doi.acm.org/10.1145/1811136.1811137 CrossRefGoogle Scholar
  19. 19.
    Zheng, H., Zhu, Z.: Power and Performance Trade-Offs in Contemporary DRAM System Designs for Multicore Processors. IEEE Transactions on Computers 59(8), 1033–1046 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xu, Z., Tu, Y.-C., Wang, X.: Exploring power-performance tradeoffs in database systems. In: ICDE 2010. pp. 485–496 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Raik Niemann
    • 1
    • 2
  • Nikolaos Korfiatis
    • 2
  • Roberto Zicari
    • 2
  • Richard Göbel
    • 1
  1. 1.Institute of Information SystemsUniversity of Applied Science HofHofGermany
  2. 2.Database and Information Systems, Institute for Informatics and MathematicsGoethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations