Personalizing Keyword Search on RDF Data

  • Giorgos Giannopoulos
  • Evmorfia Biliri
  • Timos Sellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8092)

Abstract

Despite the vast amount on works on personalizing keyword search on unstructured data (i.e. web pages), there is not much work done handling RDF data. In this paper we present our first cut approach on personalizing keyword query results on RDF data. We adopt the well known Ranking SVM approach, by training ranking functions with RDF-specific training features. The training utilizes historical user feedback, in the form of ratings on the searched items. In order to do so, we join netflix and dbpedia datasets, obtaining a dataset where we can simulate personalized search scenarios for a number of discrete users. Our evaluation shows that our approach outperforms the baseline and, in cases, it scores very close to the ground truth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: Proc. of the ACM SIGIR Conference (2006)Google Scholar
  2. 2.
    Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. of the ACM SIGKDD Conference (2002)Google Scholar
  3. 3.
    Kim, J.-W., Candan, K.-S.: Skip-and-prune: cosine-based top-k query processing for efficient context-sensitive document retrieval. In: Proceedings of the ACM SIGMOD Conference (2009)Google Scholar
  4. 4.
    Qin, T., Zhang, X.-D., Wang, D.-S., Liu, T.-Y., Lai, W., Li, H.: Ranking with multiple hyperplanes. In: Proceedings of the ACM SIGIR Conference (2007)Google Scholar
  5. 5.
    Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: Proceedings of the ACM SIGIR Conference (2005)Google Scholar
  6. 6.
    Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile constructed without any effort from users. In: Proceedings of the ACM WWW Conference (2004)Google Scholar
  7. 7.
    Giannopoulos, G., Brefeld, U., Dalamagas, T., Sellis, T.: Learning to rank user intent. In: Proceedings of the CIKM Conference (2011)Google Scholar
  8. 8.
    Dudev, M., Elbassuoni, S., Luxemburger, J., Ramanath, M., Weikum, G.: Personalizing the Search for Knowledge. In: 2nd PersDB (2008)Google Scholar
  9. 9.
    Meij, E., Bron, M., Hollink, L., Huurnink, B., de Rijke, M.: Learning Semantic Query Suggestions. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 424–440. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Rocha, C., Schwabe, D., Poggi, M.P.: Hybrid approach for searching in the semantic web. In: Proc. of the 13th International Conference on World Wide Web, pp. 374–383 (2004)Google Scholar
  11. 11.
    Dali, L., Fortuna, B., Duc, T.T., Mladenić, D.: Query-independent learning to rank for RDF entity search. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 484–498. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Jiang, X., Tan, A.H.: Learning and inferencing in user ontology for personalized Semantic Web search. Information Sciences: An International Journal 179(16), 2794–2808 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Leung, K.W.-T., Lee, D.L., Ng, W., Fung, H.Y.: A Framework for Personalizing Web Search with Concept-Based User Profiles. ACM Transactions on Internet Technology 11(4), Article 17 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giorgos Giannopoulos
    • 1
    • 2
  • Evmorfia Biliri
    • 1
  • Timos Sellis
    • 3
  1. 1.School of ECENTU AthensGreece
  2. 2.IMIS Institute“Athena” Research CenterGreece
  3. 3.RMIT UniversityAustralia

Personalised recommendations