Methodology for Dynamic Extraction of Highly Relevant Information Describing Particular Object from Semantic Web Knowledge Base

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8092)


Exploration and information discovery in a big knowledge base that uses a complex ontology is often difficult, because relevant information may be spread over a number of related objects amongst many other, loosely connected ones. This paper introduces 3 types of relations between classes in an ontology and defines the term of RDF Unit to group relevant and closely connected information. The type of relation is chosen based on association strength in the context of particular ontology. This approach was designed and implemented to manipulate and browse data in a cultural heritage Knowledge Base with over 500M triples, created by PSNC during the SYNAT research project.


Semantic Web ontology OWL RDF CIDOC CRM FRBRoo RDF Unit RDF Molecule knowledge base 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mazurek, C., Sielski, K., Walkowska, J., Werla, M.: From MARC21 and Dublin Core, through CIDOC CRM: First Tenuous Steps towards Representing Library Data in FRBRoo. CIDOC (2012),
  2. 2.
    Mazurek, C., Mielnicki, M., Nowak, A., Stroiński, M., Werla, M., Węglarz, J.: Architecture for Aggregation, Processing and Provisioning of Data from Heterogeneous Scientific Information Services. In: Bembenik, R., Skonieczny, Ł., Rybiński, H., Kryszkiewicz, M., Niezgódka, M. (eds.) Intell. Tools for Building a Scientific Information. SCI, vol. 467, pp. 529–546. Springer, Heidelberg (2013), CrossRefGoogle Scholar
  3. 3.
    Mazurek, C., Werla, M.: Network of Digital Libraries in Poland as a Model for National and International Cooperation. In: IATUL 2011 Conference: Libraries for An Open Environment: Strategies, Technologies and Partnerships (2011),
  4. 4.
    Mazurek, C., Sielski, K., Stroiński, M., Walkowska, J., Werla, M., Węglarz, J.: Transforming a Flat Metadata Schema to a Semantic Web Ontology: The Polish Digital Libraries Federation and CIDOC CRM Case Study. In: Bembenik, R., Skonieczny, L., Rybiński, H., Niezgodka, M. (eds.) Intelligent Tools for Building a Scient. Info. Plat. SCI, vol. 390, pp. 153–177. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bekiari, C., Doerr M., Le Boeuf, P.: FRBR object-oriented definition and mapping to FRBRER (Version 1.0.2) (2012),
  6. 6.
    Crofts, N., Doerr, M., Gill, T., Stead, S., Stiff, M.: Definition of the CIDOC Conceptual Reference Model, 5.0.2 edition (June 2005),
  7. 7.
    Functional requirements for bibliographic records. Final report,
  8. 8.
    Görz, G., Oischinger, M., Schiemann, B.: An Implementation of the CIDOC Conceptual Reference Model (4.2.4) in OWL-DL. In: Proceedings of CIDOC 2008 — The Digital Curation of Cultural Heritage. ICOM CIDOC, Athens (2008)Google Scholar
  9. 9.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A family of scalable semantic repositories. In: Semantic Web – Interoperability, Usability, Applicability (2010),
  10. 10.
    Ding, L., Finin, T., Peng, Y., Pinheiro da Silva, P., Deborah, L.: Tracking RDF Graph Provenance using RDF Molecules. In: Proceedings of the 4th International Semantic Web Conference (November 2005)Google Scholar
  11. 11.
    Walkowska, J., Werla, M.: Advanced Automatic Mapping from Flat or Hierarchical Metadata Schemas to a Semantic Web Ontology. In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) TPDL 2012. LNCS, vol. 7489, pp. 260–272. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Poznań Supercomputing and Networking CenterPoznańPoland

Personalised recommendations