Entity Network Extraction Based on Association Finding and Relation Extraction
- 2.2k Downloads
Abstract
One of the core aims of semantic search is to directly present users with information instead of lists of documents. Various entity-oriented tasks have been or are being considered, including entity search and related entity finding. In the context of digital libraries for computational humanities, we consider another task, network extraction: given an input entity and a document collection, extract related entities from the collection and present them as a network. We develop a combined approach for entity network extraction that consists of a co-occurrence-based approach to association finding and a machine learning-based approach to relation extraction. We evaluate our approach by comparing the results on a ground truth obtained using a pooling method.
Keywords
Digital Library Dependency Distance Related Entity Relation Extraction Association MeasurePreview
Unable to display preview. Download preview PDF.
References
- 1.Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text collections. In: DL 2000, pp. 85–94. ACM, New York (2000)Google Scholar
- 2.Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 entity track. In: TREC 2011 Working Notes. NIST (2011)Google Scholar
- 3.Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Foundations and Trends in Information Retrieval 6(2-3), 127–256 (2012)CrossRefGoogle Scholar
- 4.Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 5.Bron, M., Huurnink, B., de Rijke, M.: Linking archives using document enrichment and term selection. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.) TPDL 2011. LNCS, vol. 6966, pp. 360–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 6.Chaudhari, D.L., Damani, O.P., Laxman, S.: Lexical co-occurrence, statistical significance, and word association. In: EMNLP 2011, pp. 1058–1068. ACL, Stroudsburg (2011)Google Scholar
- 7.Elson, D.K., Dames, N., McKeown, K.R.: Extracting social networks from literary fiction. In: ACL 2010, pp. 138–147. ACL, Stroudsburg (2010)Google Scholar
- 8.Etzioni, O., et al.: Open information extraction from the web. Commun. ACM 51(12), 68–74 (2008)CrossRefGoogle Scholar
- 9.Farkas, G.: Essays on Elite Networks in Sweden: Power, social integration, and informal contacts among political elites. PhD thesis, Stockholm University (2012)Google Scholar
- 10.Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: ACL 2005, pp. 363–370. Association for Computational Linguistics, Stroudsburg (2005)Google Scholar
- 11.Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)zbMATHCrossRefGoogle Scholar
- 12.Harman, D.K., Voorhees, E.M. (eds.): TREC: Experiment and Evaluation in Information Retrieval. MIT Press (2005)Google Scholar
- 13.Joachims, T.: Training linear SVMs in linear time. In: KDD 2006, pp. 217–226. ACM, New York (2006)Google Scholar
- 14.Kautz, H., Selman, B., Shah, M.: Referral web: Combining social networks and collaborative filtering. Commun. ACM 40(3), 63–65 (1997)CrossRefGoogle Scholar
- 15.Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: ACL 2003, pp. 423–430. ACL, Stroudsburg (2003)Google Scholar
- 16.Lunenfeld, P., Burdick, A., Drucker, J., Presner, T., Schnapp, J.: Digital Humanities. MIT Press (2012)Google Scholar
- 17.Merhav, Y., Mesquita, F., Barbosa, D., Yee, W.G., Frieder, O.: Extracting information networks from the blogosphere. ACM Trans. Web 6(3), 11:1–11:33 (2012)Google Scholar
- 18.Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from wikipedia links. In: AAAI 2008 (2008)Google Scholar
- 19.Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: ACL 2009, pp. 1003–1011. ACL, Stroudsburg (2009)Google Scholar
- 20.Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)MathSciNetGoogle Scholar
- 21.Tang, J., Zhang, D., Yao, L.: Social network extraction of academic researchers. In: ICDM 2007, pp. 292–301. IEEE Computer Society, Washington, DC (2007)Google Scholar
- 22.Washtell, J., Markert, K.: A comparison of windowless and window-based computational association measures as predictors of syntagmatic human associations. In: EMNLP 2009, pp. 628–637. ACL, Stroudsburg (2009)Google Scholar